About the Project

Weierstrass%20product

AdvancedHelp

(0.002 seconds)

1—10 of 271 matching pages

1: 23.2 Definitions and Periodic Properties
§23.2(i) Lattices
§23.2(ii) Weierstrass Elliptic Functions
§23.2(iii) Periodicity
2: 23.14 Integrals
§23.14 Integrals
23.14.2 2 ( z ) d z = 1 6 ( z ) + 1 12 g 2 z ,
3: 23.10 Addition Theorems and Other Identities
§23.10(i) Addition Theorems
§23.10(ii) Duplication Formulas
(23.10.8) continues to hold when e 1 , e 2 , e 3 are permuted cyclically. …
§23.10(iii) n -Tuple Formulas
§23.10(iv) Homogeneity
4: 23.1 Special Notation
𝕃 lattice in .
= e i π τ nome.
Δ discriminant g 2 3 27 g 3 2 .
G × H Cartesian product of groups G and H , that is, the set of all pairs of elements ( g , h ) with group operation ( g 1 , h 1 ) + ( g 2 , h 2 ) = ( g 1 + g 2 , h 1 + h 2 ) .
The main functions treated in this chapter are the Weierstrass -function ( z ) = ( z | 𝕃 ) = ( z ; g 2 , g 3 ) ; the Weierstrass zeta function ζ ( z ) = ζ ( z | 𝕃 ) = ζ ( z ; g 2 , g 3 ) ; the Weierstrass sigma function σ ( z ) = σ ( z | 𝕃 ) = σ ( z ; g 2 , g 3 ) ; the elliptic modular function λ ( τ ) ; Klein’s complete invariant J ( τ ) ; Dedekind’s eta function η ( τ ) . …
5: 23.9 Laurent and Other Power Series
§23.9 Laurent and Other Power Series
c 2 = 1 20 g 2 ,
For j = 1 , 2 , 3 , and with e j as in §23.3(i),
23.9.6 ( ω j + t ) = e j + ( 3 e j 2 5 c 2 ) t 2 + ( 10 c 2 e j + 21 c 3 ) t 4 + ( 7 c 2 e j 2 + 21 c 3 e j + 5 c 2 2 ) t 6 + O ( t 8 ) ,
Also, Abramowitz and Stegun (1964, (18.5.25)) supplies the first 22 terms in the reverted form of (23.9.2) as 1 / ( z ) 0 . …
6: 23 Weierstrass Elliptic and Modular
Functions
Chapter 23 Weierstrass Elliptic and Modular Functions
7: 23.8 Trigonometric Series and Products
§23.8 Trigonometric Series and Products
§23.8(i) Fourier Series
§23.8(ii) Series of Cosecants and Cotangents
where in (23.8.4) the terms in n and n are to be bracketed together (the Eisenstein convention or principal value: see Weil (1999, p. 6) or Walker (1996, p. 3)). …
§23.8(iii) Infinite Products
8: 23.3 Differential Equations
The lattice invariants are defined by … and are denoted by e 1 , e 2 , e 3 . … Similarly for ζ ( z ; g 2 , g 3 ) and σ ( z ; g 2 , g 3 ) . As functions of g 2 and g 3 , ( z ; g 2 , g 3 ) and ζ ( z ; g 2 , g 3 ) are meromorphic and σ ( z ; g 2 , g 3 ) is entire. …
§23.3(ii) Differential Equations and Derivatives
9: 23.7 Quarter Periods
§23.7 Quarter Periods
23.7.1 ( 1 2 ω 1 ) = e 1 + ( e 1 e 3 ) ( e 1 e 2 ) = e 1 + ω 1 2 ( K ( k ) ) 2 k ,
23.7.2 ( 1 2 ω 2 ) = e 2 i ( e 1 e 2 ) ( e 2 e 3 ) = e 2 i ω 1 2 ( K ( k ) ) 2 k k ,
23.7.3 ( 1 2 ω 3 ) = e 3 ( e 1 e 3 ) ( e 2 e 3 ) = e 3 ω 1 2 ( K ( k ) ) 2 k ,
10: 23.13 Zeros
§23.13 Zeros
For information on the zeros of ( z ) see Eichler and Zagier (1982).