About the Project

Weierstrass%20elliptic%20functions

AdvancedHelp

(0.004 seconds)

8 matching pages

1: Peter L. Walker
Walker’s books are An Introduction to Complex Analysis, published by Hilger in 1974, The Theory of Fourier Series and Integrals, published by Wiley in 1986, Elliptic Functions. A Constructive Approach, published by Wiley in 1996, and Examples and Theorems in Analysis, published by Springer in 2004. …
  • 2: William P. Reinhardt
    He has recently carried out research on non-linear dynamics of Bose–Einstein condensates that served to motivate his interest in elliptic functions. …
  • In November 2015, Reinhardt was named Senior Associate Editor of the DLMF and Associate Editor for Chapters 20, 22, and 23.
    3: 23 Weierstrass Elliptic and Modular
    Functions
    Chapter 23 Weierstrass Elliptic and Modular Functions
    4: Software Index
    Open Source With Book Commercial
    23 Weierstrass Elliptic and Modular Functions
    ‘✓’ indicates that a software package implements the functions in a section; ‘a’ indicates available functionality through optional or add-on packages; an empty space indicates no known support. … In the list below we identify four main sources of software for computing special functions. …
  • Commercial Software.

    Such software ranges from a collection of reusable software parts (e.g., a library) to fully functional interactive computing environments with an associated computing language. Such software is usually professionally developed, tested, and maintained to high standards. It is available for purchase, often with accompanying updates and consulting support.

  • The following are web-based software repositories with significant holdings in the area of special functions. …
    5: 23.14 Integrals
    §23.14 Integrals
    23.14.2 2 ( z ) d z = 1 6 ( z ) + 1 12 g 2 z ,
    6: 23.9 Laurent and Other Power Series
    §23.9 Laurent and Other Power Series
    c 2 = 1 20 g 2 ,
    For j = 1 , 2 , 3 , and with e j as in §23.3(i),
    23.9.6 ( ω j + t ) = e j + ( 3 e j 2 5 c 2 ) t 2 + ( 10 c 2 e j + 21 c 3 ) t 4 + ( 7 c 2 e j 2 + 21 c 3 e j + 5 c 2 2 ) t 6 + O ( t 8 ) ,
    Also, Abramowitz and Stegun (1964, (18.5.25)) supplies the first 22 terms in the reverted form of (23.9.2) as 1 / ( z ) 0 . …
    7: 20.11 Generalizations and Analogs
    §20.11 Generalizations and Analogs
    As in §20.11(ii), the modulus k of elliptic integrals (§19.2(ii)), Jacobian elliptic functions22.2), and Weierstrass elliptic functions23.6(ii)) can be expanded in q -series via (20.9.1). … … For applications to rapidly convergent expansions for π see Chudnovsky and Chudnovsky (1988), and for applications in the construction of elliptic-hypergeometric series see Rosengren (2004).
    §20.11(iv) Theta Functions with Characteristics
    8: Errata
  • Subsection 19.25(vi)

    The Weierstrass lattice roots e j , were linked inadvertently as the base of the natural logarithm. In order to resolve this inconsistency, the lattice roots e j , and lattice invariants g 2 , g 3 , now link to their respective definitions (see §§23.2(i), 23.3(i)).

    Reported by Felix Ospald.

  • Equation (19.25.37)

    The Weierstrass zeta function was incorrectly linked to the definition of the Riemann zeta function. However, to the eye, the function appeared correct. The link was corrected.

  • Equations (22.19.6), (22.19.7), (22.19.8), (22.19.9)

    These equations were rewritten with the modulus (second argument) of the Jacobian elliptic function defined explicitly in the preceding line of text.

  • Table 22.4.3

    Originally a minus sign was missing in the entries for cd u and dc u in the second column (headed z + K + i K ). The correct entries are k 1 ns z and k sn z . Note: These entries appear online but not in the published print edition. More specifically, Table 22.4.3 in the published print edition is restricted to the three Jacobian elliptic functions sn , cn , dn , whereas Table 22.4.3 covers all 12 Jacobian elliptic functions.

    u
    z + K z + K + i K z + i K z + 2 K z + 2 K + 2 i K z + 2 i K
    cd u sn z k 1 ns z k 1 dc z cd z cd z cd z
    dc u ns z k sn z k cd z dc z dc z dc z

    Reported 2014-02-28 by Svante Janson.

  • Chapters 8, 20, 36

    Several new equations have been added. See (8.17.24), (20.7.34), §20.11(v), (26.12.27), (36.2.28), and (36.2.29).