About the Project

Weber%20parabolic%20cylinder%20functions

AdvancedHelp

(0.005 seconds)

8 matching pages

1: Bibliography G
  • A. Gil, J. Segura, and N. M. Temme (2004c) Integral representations for computing real parabolic cylinder functions. Numer. Math. 98 (1), pp. 105–134.
  • A. Gil, J. Segura, and N. M. Temme (2006a) Computing the real parabolic cylinder functions U ( a , x ) , V ( a , x ) . ACM Trans. Math. Software 32 (1), pp. 70–101.
  • A. Gil, J. Segura, and N. M. Temme (2006b) Algorithm 850: Real parabolic cylinder functions U ( a , x ) , V ( a , x ) . ACM Trans. Math. Software 32 (1), pp. 102–112.
  • A. Gil, J. Segura, and N. M. Temme (2011a) Algorithm 914: parabolic cylinder function W ( a , x ) and its derivative. ACM Trans. Math. Software 38 (1), pp. Art. 6, 5.
  • A. Gil, J. Segura, and N. M. Temme (2011b) Fast and accurate computation of the Weber parabolic cylinder function W ( a , x ) . IMA J. Numer. Anal. 31 (3), pp. 1194–1216.
  • 2: Bibliography S
  • J. Segura and A. Gil (1999) Evaluation of associated Legendre functions off the cut and parabolic cylinder functions. Electron. Trans. Numer. Anal. 9, pp. 137–146.
  • H. Shanker (1939) On the expansion of the parabolic cylinder function in a series of the product of two parabolic cylinder functions. J. Indian Math. Soc. (N. S.) 3, pp. 226–230.
  • H. Shanker (1940a) On integral representation of Weber’s parabolic cylinder function and its expansion into an infinite series. J. Indian Math. Soc. (N. S.) 4, pp. 34–38.
  • H. Shanker (1940b) On certain integrals and expansions involving Weber’s parabolic cylinder functions. J. Indian Math. Soc. (N. S.) 4, pp. 158–166.
  • B. D. Sleeman (1968b) On parabolic cylinder functions. J. Inst. Math. Appl. 4 (1), pp. 106–112.
  • 3: Software Index
    Open Source With Book Commercial
    12 Parabolic Cylinder Functions
    ‘✓’ indicates that a software package implements the functions in a section; ‘a’ indicates available functionality through optional or add-on packages; an empty space indicates no known support. … In the list below we identify four main sources of software for computing special functions. …
  • Commercial Software.

    Such software ranges from a collection of reusable software parts (e.g., a library) to fully functional interactive computing environments with an associated computing language. Such software is usually professionally developed, tested, and maintained to high standards. It is available for purchase, often with accompanying updates and consulting support.

  • The following are web-based software repositories with significant holdings in the area of special functions. …
    4: Bibliography O
  • F. W. J. Olver (1959) Uniform asymptotic expansions for Weber parabolic cylinder functions of large orders. J. Res. Nat. Bur. Standards Sect. B 63B, pp. 131–169.
  • F. W. J. Olver (1980b) Whittaker functions with both parameters large: Uniform approximations in terms of parabolic cylinder functions. Proc. Roy. Soc. Edinburgh Sect. A 86 (3-4), pp. 213–234.
  • M. Onoe (1955) Formulae and Tables, The Modified Quotients of Cylinder Functions. Technical report Technical Report UDC 517.564.3:518.25, Vol. 4, Report of the Institute of Industrial Science, University of Tokyo, Institute of Industrial Science, Chiba City, Japan.
  • M. Onoe (1956) Modified quotients of cylinder functions. Math. Tables Aids Comput. 10, pp. 27–28.
  • R. H. Ott (1985) Scattering by a parabolic cylinder—a uniform asymptotic expansion. J. Math. Phys. 26 (4), pp. 854–860.
  • 5: Bibliography F
  • M. Faierman (1992) Generalized parabolic cylinder functions. Asymptotic Anal. 5 (6), pp. 517–531.
  • FDLIBM (free C library)
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • L. Fox (1960) Tables of Weber Parabolic Cylinder Functions and Other Functions for Large Arguments. National Physical Laboratory Mathematical Tables, Vol. 4. Department of Scientific and Industrial Research, Her Majesty’s Stationery Office, London.
  • G. Freud (1969) On weighted polynomial approximation on the whole real axis. Acta Math. Acad. Sci. Hungar. 20, pp. 223–225.
  • 6: Bibliography V
  • C. G. van der Laan and N. M. Temme (1984) Calculation of Special Functions: The Gamma Function, the Exponential Integrals and Error-Like Functions. CWI Tract, Vol. 10, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam.
  • R. S. Varma (1941) An infinite series of Weber’s parabolic cylinder functions. Proc. Benares Math. Soc. (N.S.) 3, pp. 37.
  • R. Vidūnas (2005) Transformations of some Gauss hypergeometric functions. J. Comput. Appl. Math. 178 (1-2), pp. 473–487.
  • N. Ja. Vilenkin (1968) Special Functions and the Theory of Group Representations. American Mathematical Society, Providence, RI.
  • H. Volkmer (2004a) Error estimates for Rayleigh-Ritz approximations of eigenvalues and eigenfunctions of the Mathieu and spheroidal wave equation. Constr. Approx. 20 (1), pp. 39–54.
  • 7: Bibliography M
  • J. C. P. Miller (Ed.) (1955) Tables of Weber Parabolic Cylinder Functions. Her Majesty’s Stationery Office, London.
  • W. Miller (1974) Lie theory and separation of variables. I: Parabolic cylinder coordinates. SIAM J. Math. Anal. 5 (4), pp. 626–643.
  • M. E. Muldoon and R. Spigler (1984) Some remarks on zeros of cylinder functions. SIAM J. Math. Anal. 15 (6), pp. 1231–1233.
  • K. H. Müller (1988) Elastodynamics in parabolic cylinders. Z. Angew. Math. Phys. 39 (5), pp. 748–752.
  • J. Murzewski and A. Sowa (1972) Tables of the functions of the parabolic cylinder for negative integer parameters. Zastos. Mat. 13, pp. 261–273.
  • 8: Bibliography B
  • G. E. Barr (1968) A note on integrals involving parabolic cylinder functions. SIAM J. Appl. Math. 16 (1), pp. 71–74.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • G. D. Bernard and A. Ishimaru (1962) Tables of the Anger and Lommel-Weber Functions. Technical report Technical Report 53 and AFCRL 796, University Washington Press, Seattle.
  • W. G. C. Boyd (1973) The asymptotic analysis of canonical problems in high-frequency scattering theory. II. The circular and parabolic cylinders. Proc. Cambridge Philos. Soc. 74, pp. 313–332.
  • N. Brazel, F. Lawless, and A. Wood (1992) Exponential asymptotics for an eigenvalue of a problem involving parabolic cylinder functions. Proc. Amer. Math. Soc. 114 (4), pp. 1025–1032.