About the Project

Weber%20function

AdvancedHelp

(0.003 seconds)

1—10 of 15 matching pages

1: 10.75 Tables
  • The main tables in Abramowitz and Stegun (1964, Chapter 9) give J 0 ( x ) to 15D, J 1 ( x ) , J 2 ( x ) , Y 0 ( x ) , Y 1 ( x ) to 10D, Y 2 ( x ) to 8D, x = 0 ( .1 ) 17.5 ; Y n ( x ) ( 2 / π ) J n ( x ) ln x , n = 0 , 1 , x = 0 ( .1 ) 2 , 8D; J n ( x ) , Y n ( x ) , n = 3 ( 1 ) 9 , x = 0 ( .2 ) 20 , 5D or 5S; J n ( x ) , Y n ( x ) , n = 0 ( 1 ) 20 ( 10 ) 50 , 100 , x = 1 , 2 , 5 , 10 , 50 , 100 , 10S; modulus and phase functions x M n ( x ) , θ n ( x ) x , n = 0 , 1 , 2 , 1 / x = 0 ( .01 ) 0.1 , 8D.

  • Abramowitz and Stegun (1964, Chapter 9) tabulates j n , m , J n ( j n , m ) , j n , m , J n ( j n , m ) , n = 0 ( 1 ) 8 , m = 1 ( 1 ) 20 , 5D (10D for n = 0 ), y n , m , Y n ( y n , m ) , y n , m , Y n ( y n , m ) , n = 0 ( 1 ) 8 , m = 1 ( 1 ) 20 , 5D (8D for n = 0 ), J 0 ( j 0 , m x ) , m = 1 ( 1 ) 5 , x = 0 ( .02 ) 1 , 5D. Also included are the first 5 zeros of the functions x J 1 ( x ) λ J 0 ( x ) , J 1 ( x ) λ x J 0 ( x ) , J 0 ( x ) Y 0 ( λ x ) Y 0 ( x ) J 0 ( λ x ) , J 1 ( x ) Y 1 ( λ x ) Y 1 ( x ) J 1 ( λ x ) , J 1 ( x ) Y 0 ( λ x ) Y 1 ( x ) J 0 ( λ x ) for various values of λ and λ 1 in the interval [ 0 , 1 ] , 4–8D.

  • 2: 11.14 Tables
  • Zhang and Jin (1996) tabulates 𝐇 n ( x ) and 𝐋 n ( x ) for n = 4 ( 1 ) 3 and x = 0 ( 1 ) 20 to 8D or 7S.

  • §11.14(iv) Anger–Weber Functions
  • Jahnke and Emde (1945) tabulates 𝐄 n ( x ) for n = 1 , 2 and x = 0 ( .01 ) 14.99 to 4D.

  • §11.14(v) Incomplete Functions
  • Agrest and Maksimov (1971, Chapter 11) defines incomplete Struve, Anger, and Weber functions and includes tables of an incomplete Struve function 𝐇 n ( x , α ) for n = 0 , 1 , x = 0 ( .2 ) 10 , and α = 0 ( .2 ) 1.4 , 1 2 π , together with surface plots.

  • 3: 10.3 Graphics
    §10.3 Graphics
    §10.3(i) Real Order and Variable
    §10.3(ii) Real Order, Complex Variable
    In the graphics shown in this subsection, height corresponds to the absolute value of the function and color to the phase. …
    §10.3(iii) Imaginary Order, Real Variable
    4: Bibliography G
  • W. Gautschi (1994) Algorithm 726: ORTHPOL — a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 20 (1), pp. 21–62.
  • A. Gil, J. Segura, and N. M. Temme (2011b) Fast and accurate computation of the Weber parabolic cylinder function W ( a , x ) . IMA J. Numer. Anal. 31 (3), pp. 1194–1216.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • S. Goldstein (1927) Mathieu functions. Trans. Camb. Philos. Soc. 23, pp. 303–336.
  • Ya. I. Granovskiĭ, I. M. Lutzenko, and A. S. Zhedanov (1992) Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. Phys. 217 (1), pp. 1–20.
  • 5: Bibliography K
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • I. Ye. Kireyeva and K. A. Karpov (1961) Tables of Weber functions. Vol. I. Mathematical Tables Series, Vol. 15, Pergamon Press, London-New York.
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • T. H. Koornwinder (2009) The Askey scheme as a four-manifold with corners. Ramanujan J. 20 (3), pp. 409–439.
  • 6: Bibliography N
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • G. Nemes (2014b) The resurgence properties of the large order asymptotics of the Anger-Weber function I. J. Class. Anal. 4 (1), pp. 1–39.
  • G. Nemes (2014c) The resurgence properties of the large order asymptotics of the Anger-Weber function II. J. Class. Anal. 4 (2), pp. 121–147.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • 7: Software Index
    Open Source With Book Commercial
    20 Theta Functions
    ‘✓’ indicates that a software package implements the functions in a section; ‘a’ indicates available functionality through optional or add-on packages; an empty space indicates no known support. … In the list below we identify four main sources of software for computing special functions. …
  • Commercial Software.

    Such software ranges from a collection of reusable software parts (e.g., a library) to fully functional interactive computing environments with an associated computing language. Such software is usually professionally developed, tested, and maintained to high standards. It is available for purchase, often with accompanying updates and consulting support.

  • The following are web-based software repositories with significant holdings in the area of special functions. …
    8: Bibliography S
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • H. Shanker (1940a) On integral representation of Weber’s parabolic cylinder function and its expansion into an infinite series. J. Indian Math. Soc. (N. S.) 4, pp. 34–38.
  • H. Shanker (1940b) On certain integrals and expansions involving Weber’s parabolic cylinder functions. J. Indian Math. Soc. (N. S.) 4, pp. 158–166.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • J. R. Stembridge (1995) A Maple package for symmetric functions. J. Symbolic Comput. 20 (5-6), pp. 755–768.
  • 9: Bibliography
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 1103–1106.
  • M. Abramowitz (1954) Regular and irregular Coulomb wave functions expressed in terms of Bessel-Clifford functions. J. Math. Physics 33, pp. 111–116.
  • A. Adelberg (1992) On the degrees of irreducible factors of higher order Bernoulli polynomials. Acta Arith. 62 (4), pp. 329–342.
  • D. E. Amos (1989) Repeated integrals and derivatives of K Bessel functions. SIAM J. Math. Anal. 20 (1), pp. 169–175.
  • G. B. Arfken and H. J. Weber (2005) Mathematical Methods for Physicists. 6th edition, Elsevier, Oxford.
  • 10: 10.73 Physical Applications
    See Krivoshlykov (1994, Chapter 2, §2.2.10; Chapter 5, §5.2.2), Kapany and Burke (1972, Chapters 4–6; Chapter 7, §A.1), and Slater (1942, Chapter 4, §§20, 25). … With the spherical harmonic Y , m ( θ , ϕ ) defined as in §14.30(i), the solutions are of the form f = g ( k ρ ) Y , m ( θ , ϕ ) with g = 𝗃 , 𝗒 , 𝗁 ( 1 ) , or 𝗁 ( 2 ) , depending on the boundary conditions. …
    §10.73(iii) Kelvin Functions
    §10.73(iv) Bickley Functions