About the Project

Watson%20lemma

AdvancedHelp

(0.002 seconds)

1—10 of 207 matching pages

1: 20 Theta Functions
Chapter 20 Theta Functions
2: 23 Weierstrass Elliptic and Modular
Functions
3: Bibliography W
  • G. N. Watson (1910) The cubic transformation of the hypergeometric function. Quart. J. Pure and Applied Math. 41, pp. 70–79.
  • G. N. Watson (1935a) Generating functions of class-numbers. Compositio Math. 1, pp. 39–68.
  • G. N. Watson (1935b) The surface of an ellipsoid. Quart. J. Math., Oxford Ser. 6, pp. 280–287.
  • G. N. Watson (1937) Two tables of partitions. Proc. London Math. Soc. (2) 42, pp. 550–556.
  • G. N. Watson (1949) A table of Ramanujan’s function τ ( n ) . Proc. London Math. Soc. (2) 51, pp. 1–13.
  • 4: 20.8 Watson’s Expansions
    §20.8 Watson’s Expansions
    See Watson (1935a). …
    5: 11.6 Asymptotic Expansions
    c 3 ( λ ) = 20 λ 6 4 λ 4 ,
    See also Watson (1944, p. 336). … and for an estimate of the relative error in this approximation see Watson (1944, p. 336).
    6: 2.3 Integrals of a Real Variable
    §2.3(ii) Watson’s Lemma
    (In other words, differentiation of (2.3.8) with respect to the parameter λ (or μ ) is legitimate.) … Watson’s lemma can be regarded as a special case of this result. For error bounds for Watson’s lemma and Laplace’s method see Boyd (1993) and Olver (1997b, Chapter 3). … The first result is the analog of Watson’s lemma2.3(ii)). …
    7: Bibliography
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 1103–1106.
  • A. Adelberg (1992) On the degrees of irreducible factors of higher order Bernoulli polynomials. Acta Arith. 62 (4), pp. 329–342.
  • C. Adiga, B. C. Berndt, S. Bhargava, and G. N. Watson (1985) Chapter 16 of Ramanujan’s second notebook: Theta-functions and q -series. Mem. Amer. Math. Soc. 53 (315), pp. v+85.
  • G. E. Andrews and A. Berkovich (1998) A trinomial analogue of Bailey’s lemma and N = 2 superconformal invariance. Comm. Math. Phys. 192 (2), pp. 245–260.
  • G. E. Andrews (2001) Bailey’s Transform, Lemma, Chains and Tree. In Special Functions 2000: Current Perspective and Future Directions (Tempe, AZ), J. Bustoz, M. E. H. Ismail, and S. K. Suslov (Eds.), NATO Sci. Ser. II Math. Phys. Chem., Vol. 30, pp. 1–22.
  • 8: 2.4 Contour Integrals
    §2.4(i) Watson’s Lemma
    If this integral converges uniformly at each limit for all sufficiently large t , then by the Riemann–Lebesgue lemma1.8(i)) …
    9: 29 Lamé Functions
    10: 20.7 Identities
    For these and similar formulas see Lawden (1989, §1.4), Whittaker and Watson (1927, pp. 487–488), and Carlson (2011, §5). …
    §20.7(v) Watson’s Identities
    See Lawden (1989, pp. 19–20). …
    20.7.34 θ 1 ( z , q 2 ) θ 3 ( z , q 2 ) θ 1 ( z , i q ) = θ 2 ( z , q 2 ) θ 4 ( z , q 2 ) θ 2 ( z , i q ) = i 1 / 4 θ 2 ( 0 , q 2 ) θ 4 ( 0 , q 2 ) 2 .