About the Project

Voigt functions

AdvancedHelp

(0.001 seconds)

1—10 of 11 matching pages

1: 7.19 Voigt Functions
§7.19 Voigt Functions
β–Ί
§7.19(i) Definitions
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 7.19.1: Voigt function 𝖴 ⁑ ( x , t ) , t = 0.1 , 2.5 , 5 , 10 . Magnify
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 7.19.2: Voigt function 𝖡 ⁑ ( x , t ) , t = 0.1 , 2.5 , 5 , 10 . Magnify
β–Ί
§7.19(iii) Properties
2: 7.21 Physical Applications
β–ΊVoigt functions 𝖴 ⁑ ( x , t ) , 𝖡 ⁑ ( x , t ) , can be regarded as the convolution of a Gaussian and a Lorentzian, and appear when the analysis of light (or particulate) absorption (or emission) involves thermal motion effects. …
3: 7.22 Methods of Computation
β–Ί
§7.22(iv) Voigt Functions
4: 7.23 Tables
β–Ί
  • Abramowitz and Stegun (1964, Table 27.6) includes the Goodwin–Staton integral G ⁑ ( x ) , x = 1 ⁒ ( .1 ) ⁒ 3 ⁒ ( .5 ) ⁒ 8 , 4D; also G ⁑ ( x ) + ln ⁑ x , x = 0 ⁒ ( .05 ) ⁒ 1 , 4D.

  • β–Ί
  • Finn and Mugglestone (1965) includes the Voigt function H ⁑ ( a , u ) , u [ 0 , 22 ] , a [ 0 , 1 ] , 6S.

  • 5: 7.1 Special Notation
    β–ΊThe main functions treated in this chapter are the error function erf ⁑ z ; the complementary error functions erfc ⁑ z and w ⁑ ( z ) ; Dawson’s integral F ⁑ ( z ) ; the Fresnel integrals β„± ⁑ ( z ) , C ⁑ ( z ) , and S ⁑ ( z ) ; the Goodwin–Staton integral G ⁑ ( z ) ; the repeated integrals of the complementary error function i n ⁒ erfc ⁑ ( z ) ; the Voigt functions 𝖴 ⁑ ( x , t ) and 𝖡 ⁑ ( x , t ) . …
    6: Bibliography Z
    β–Ί
  • M. R. Zaghloul and A. N. Ali (2011) Algorithm 916: computing the Faddeyeva and Voigt functions. ACM Trans. Math. Software 38 (2), pp. Art. 15, 22.
  • β–Ί
  • M. R. Zaghloul (2016) Remark on “Algorithm 916: computing the Faddeyeva and Voigt functions”: efficiency improvements and Fortran translation. ACM Trans. Math. Softw. 42 (3), pp. 26:1–26:9.
  • 7: Bibliography
    β–Ί
  • B. H. Armstrong (1967) Spectrum line profiles: The Voigt function. J. Quant. Spectrosc. Radiat. Transfer 7, pp. 61–88.
  • 8: Bibliography L
    β–Ί
  • A. E. Lynas-Gray (1993) VOIGTL – A fast subroutine for Voigt function evaluation on vector processors. Comput. Phys. Comm. 75 (1-2), pp. 135–142.
  • 9: Bibliography W
    β–Ί
  • R. J. Wells (1999) Rapid approximation to the Voigt/Faddeeva function and its derivatives. J. Quant. Spect. and Rad. Transfer 62 (1), pp. 29–48.
  • 10: Software Index
    β–Ί β–Ίβ–Ίβ–Ί
    Open Source With Book Commercial
    7.25(vi) β„± ⁑ ( x ) , G ⁑ ( x ) , 𝖴 ⁑ ( x , t ) , 𝖡 ⁑ ( x , t ) , x ℝ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“
    β–Ί‘βœ“’ indicates that a software package implements the functions in a section; ‘a’ indicates available functionality through optional or add-on packages; an empty space indicates no known support. … β–ΊIn the list below we identify four main sources of software for computing special functions. … β–Ί
  • Commercial Software.

    Such software ranges from a collection of reusable software parts (e.g., a library) to fully functional interactive computing environments with an associated computing language. Such software is usually professionally developed, tested, and maintained to high standards. It is available for purchase, often with accompanying updates and consulting support.

  • β–ΊThe following are web-based software repositories with significant holdings in the area of special functions. …