About the Project
NIST

Voigt functions

AdvancedHelp

(0.002 seconds)

1—10 of 11 matching pages

1: 7.19 Voigt Functions
§7.19 Voigt Functions
§7.19(i) Definitions
See accompanying text
Figure 7.19.1: Voigt function U ( x , t ) , t = 0.1 , 2.5 , 5 , 10 . Magnify
See accompanying text
Figure 7.19.2: Voigt function V ( x , t ) , t = 0.1 , 2.5 , 5 , 10 . Magnify
§7.19(iii) Properties
2: 7.21 Physical Applications
Voigt functions U ( x , t ) , V ( x , t ) , can be regarded as the convolution of a Gaussian and a Lorentzian, and appear when the analysis of light (or particulate) absorption (or emission) involves thermal motion effects. …
3: 7.22 Methods of Computation
§7.22(iv) Voigt Functions
4: 7.23 Tables
  • Abramowitz and Stegun (1964, Table 27.6) includes the Goodwin–Staton integral G ( x ) , x = 1 ( .1 ) 3 ( .5 ) 8 , 4D; also G ( x ) + ln x , x = 0 ( .05 ) 1 , 4D.

  • Finn and Mugglestone (1965) includes the Voigt function H ( a , u ) , u [ 0 , 22 ] , a [ 0 , 1 ] , 6S.

  • 5: 7.1 Special Notation
    The main functions treated in this chapter are the error function erf z ; the complementary error functions erfc z and w ( z ) ; Dawson’s integral F ( z ) ; the Fresnel integrals ( z ) , C ( z ) , and S ( z ) ; the Goodwin–Staton integral G ( z ) ; the repeated integrals of the complementary error function i n erfc ( z ) ; the Voigt functions U ( x , t ) and V ( x , t ) . …
    6: Bibliography Z
  • M. R. Zaghloul and A. N. Ali (2011) Algorithm 916: computing the Faddeyeva and Voigt functions. ACM Trans. Math. Software 38 (2), pp. Art. 15, 22.
  • M. R. Zaghloul (2016) Remark on “Algorithm 916: computing the Faddeyeva and Voigt functions”: efficiency improvements and Fortran translation. ACM Trans. Math. Softw. 42 (3), pp. 26:1–26:9.
  • 7: Bibliography
  • B. H. Armstrong (1967) Spectrum line profiles: The Voigt function. J. Quant. Spectrosc. Radiat. Transfer 7, pp. 61–88.
  • 8: Bibliography L
  • A. E. Lynas-Gray (1993) VOIGTL – A fast subroutine for Voigt function evaluation on vector processors. Comput. Phys. Comm. 75 (1-2), pp. 135–142.
  • 9: Bibliography W
  • R. J. Wells (1999) Rapid approximation to the Voigt/Faddeeva function and its derivatives. J. Quant. Spect. and Rad. Transfer 62 (1), pp. 29–48.
  • 10: 7.25 Software
    §7.25(ii) erf x , erfc x , i n erfc ( x ) , x
    §7.25(iii) erf z , erfc z , w ( z ) , z
    No research software has been found for these functions. …
    §7.25(vi) ( x ) , G ( x ) , U ( x , t ) , V ( x , t ) , x
    No research software has been found for these functions. …