About the Project

Vandermonde%20sum

AdvancedHelp

(0.002 seconds)

1—10 of 422 matching pages

1: 1.3 Determinants, Linear Operators, and Spectral Expansions
1.3.4 det [ a j k ] = = 1 n a j A j .
1.3.9 det [ a j k ] 2 ( k = 1 n a 1 k 2 ) ( k = 1 n a 2 k 2 ) ( k = 1 n a n k 2 ) .
for every distinct pair of j , k , or when one of the factors k = 1 n a j k 2 vanishes. …
Vandermonde Determinant or Vandermondian
1.3.19 j , k = | a j , k δ j , k |
2: Bibliography D
  • C. de la Vallée Poussin (1896b) Recherches analytiques sur la théorie des nombres premiers. Deuxième partie. Les fonctions de Dirichlet et les nombres premiers de la forme linéaire M x + N . Ann. Soc. Sci. Bruxelles 20, pp. 281–397 (French).
  • K. Dilcher (1996) Sums of products of Bernoulli numbers. J. Number Theory 60 (1), pp. 23–41.
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • J. Dougall (1907) On Vandermonde’s theorem, and some more general expansions. Proc. Edinburgh Math. Soc. 25, pp. 114–132.
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • 3: 17.6 ϕ 1 2 Function
    q -Gauss Sum
    First q -Chu–Vandermonde Sum
    Second q -Chu–Vandermonde Sum
    Andrews–Askey Sum
    Nonterminating Form of the q -Vandermonde Sum
    4: 15.4 Special Cases
    Chu–Vandermonde Identity
    Dougall’s Bilateral Sum
    15.4.25 n = Γ ( a + n ) Γ ( b + n ) Γ ( c + n ) Γ ( d + n ) = π 2 sin ( π a ) sin ( π b ) Γ ( c + d a b 1 ) Γ ( c a ) Γ ( d a ) Γ ( c b ) Γ ( d b ) .
    5: 24.20 Tables
    §24.20 Tables
    Abramowitz and Stegun (1964, Chapter 23) includes exact values of k = 1 m k n , m = 1 ( 1 ) 100 , n = 1 ( 1 ) 10 ; k = 1 k n , k = 1 ( 1 ) k 1 k n , k = 0 ( 2 k + 1 ) n , n = 1 , 2 , , 20D; k = 0 ( 1 ) k ( 2 k + 1 ) n , n = 1 , 2 , , 18D. Wagstaff (1978) gives complete prime factorizations of N n and E n for n = 20 ( 2 ) 60 and n = 8 ( 2 ) 42 , respectively. …
    6: 20 Theta Functions
    Chapter 20 Theta Functions
    7: 27.2 Functions
    Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. …It can be expressed as a sum over all primes p x : … the sum of the k th powers of the positive integers m n that are relatively prime to n . … is the sum of the α th powers of the divisors of n , where the exponent α can be real or complex. … Table 27.2.2 tabulates the Euler totient function ϕ ( n ) , the divisor function d ( n ) ( = σ 0 ( n ) ), and the sum of the divisors σ ( n ) ( = σ 1 ( n ) ), for n = 1 ( 1 ) 52 . …
    8: 25.12 Polylogarithms
    25.12.7 Li 2 ( e i θ ) = n = 1 cos ( n θ ) n 2 + i n = 1 sin ( n θ ) n 2 .
    The cosine series in (25.12.7) has the elementary sum
    See accompanying text
    Figure 25.12.1: Dilogarithm function Li 2 ( x ) , 20 x < 1 . Magnify
    See accompanying text
    Figure 25.12.2: Absolute value of the dilogarithm function | Li 2 ( x + i y ) | , 20 x 20 , 20 y 20 . … Magnify 3D Help
    25.12.10 Li s ( z ) = n = 1 z n n s .
    9: 4.27 Sums
    §4.27 Sums
    For sums of trigonometric and inverse trigonometric functions see Gradshteyn and Ryzhik (2000, Chapter 1), Hansen (1975, §§14–42), Oberhettinger (1973), and Prudnikov et al. (1986a, Chapter 5).
    10: 6.16 Mathematical Applications
    The n th partial sum is given by
    6.16.2 S n ( x ) = k = 0 n 1 sin ( ( 2 k + 1 ) x ) 2 k + 1 = 1 2 0 x sin ( 2 n t ) sin t d t = 1 2 Si ( 2 n x ) + R n ( x ) ,
    See accompanying text
    Figure 6.16.2: The logarithmic integral li ( x ) , together with vertical bars indicating the value of π ( x ) for x = 10 , 20 , , 1000 . Magnify