About the Project

Van Vleck theorem for continued fractions

AdvancedHelp

(0.002 seconds)

11—20 of 266 matching pages

11: 13.17 Continued Fractions
§13.17 Continued Fractions
13.17.1 z M κ , μ ( z ) M κ 1 2 , μ + 1 2 ( z ) = 1 + u 1 z 1 + u 2 z 1 + ,
This continued fraction converges to the meromorphic function of z on the left-hand side for all z . For more details on how a continued fraction converges to a meromorphic function see Jones and Thron (1980). … This continued fraction converges to the meromorphic function of z on the left-hand side throughout the sector | ph z | < π . …
12: Bibliography V
  • A. L. Van Buren, R. V. Baier, S. Hanish, and B. J. King (1972) Calculation of spheroidal wave functions. J. Acoust. Soc. Amer. 51, pp. 414–416.
  • A. L. Van Buren and J. E. Boisvert (2007) Accurate calculation of the modified Mathieu functions of integer order. Quart. Appl. Math. 65 (1), pp. 1–23.
  • Van Buren (website) Mathieu and Spheroidal Wave Functions: Fortran Programs for their Accurate Calculation
  • H. C. van de Hulst (1957) Light Scattering by Small Particles. John Wiley and Sons. Inc., New York.
  • H. C. van de Hulst (1980) Multiple Light Scattering. Vol. 1, Academic Press, New York.
  • 13: 12.6 Continued Fraction
    §12.6 Continued Fraction
    For a continued-fraction expansion of the ratio U ( a , x ) / U ( a 1 , x ) see Cuyt et al. (2008, pp. 340–341).
    14: Bibliography M
  • A. Máté, P. Nevai, and W. Van Assche (1991) The supports of measures associated with orthogonal polynomials and the spectra of the related selfadjoint operators. Rocky Mountain J. Math. 21 (1), pp. 501–527.
  • A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone (1997) Handbook of Applied Cryptography. CRC Press, Boca Raton, FL.
  • L. M. Milne-Thomson (1950) Jacobian Elliptic Function Tables. Dover Publications Inc., New York.
  • C. Mortici (2011a) A new Stirling series as continued fraction. Numer. Algorithms 56 (1), pp. 17–26.
  • C. Mortici (2013a) A continued fraction approximation of the gamma function. J. Math. Anal. Appl. 402 (2), pp. 405–410.
  • 15: Bibliography D
  • N. G. de Bruijn (1937) Integralen voor de ζ -functie van Riemann. Mathematica (Zutphen) B5, pp. 170–180 (Dutch).
  • B. Deconinck, M. Heil, A. Bobenko, M. van Hoeij, and M. Schmies (2004) Computing Riemann theta functions. Math. Comp. 73 (247), pp. 1417–1442.
  • B. Deconinck and M. van Hoeij (2001) Computing Riemann matrices of algebraic curves. Phys. D 152/153, pp. 28–46.
  • J. Deltour (1968) The computation of lattice frequency distribution functions by means of continued fractions. Physica 39 (3), pp. 413–423.
  • T. M. Dunster (1999) Asymptotic approximations for the Jacobi and ultraspherical polynomials, and related functions. Methods Appl. Anal. 6 (3), pp. 21–56.
  • 16: Bibliography C
  • B. W. Char (1980) On Stieltjes’ continued fraction for the gamma function. Math. Comp. 34 (150), pp. 547–551.
  • A. D. Chave (1983) Numerical integration of related Hankel transforms by quadrature and continued fraction expansion. Geophysics 48 (12), pp. 1671–1686.
  • P. A. Clarkson (2006) Painlevé Equations—Nonlinear Special Functions: Computation and Application. In Orthogonal Polynomials and Special Functions, F. Marcellàn and W. van Assche (Eds.), Lecture Notes in Math., Vol. 1883, pp. 331–411.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • A. Cuyt, V. Petersen, B. Verdonk, H. Waadeland, W. B. Jones, and C. Bonan-Hamada (2007) Handbook of Continued Fractions for Special Functions. Kluwer Academic Publishers Group, Dordrecht.
  • 17: Bibliography G
  • I. Gargantini and P. Henrici (1967) A continued fraction algorithm for the computation of higher transcendental functions in the complex plane. Math. Comp. 21 (97), pp. 18–29.
  • J. S. Geronimo, O. Bruno, and W. Van Assche (2004) WKB and turning point theory for second-order difference equations. In Spectral Methods for Operators of Mathematical Physics, Oper. Theory Adv. Appl., Vol. 154, pp. 101–138.
  • G. H. Golub and C. F. Van Loan (1996) Matrix Computations. 3rd edition, Johns Hopkins University Press, Baltimore, MD.
  • E. T. Goodwin and J. Staton (1948) Table of 0 e u 2 u + x 𝑑 u . Quart. J. Mech. Appl. Math. 1 (1), pp. 319–326.
  • F. W. Grover (1946) Inductance Calculations. Van Nostrand, New York.
  • 18: 30.16 Methods of Computation
    Approximations to eigenvalues can be improved by using the continued-fraction equations from §30.3(iii) and §30.8; see Bouwkamp (1947) and Meixner and Schäfke (1954, §3.93). … For other methods see Van Buren and Boisvert (2002, 2004).
    19: Bibliography J
  • L. Jacobsen, W. B. Jones, and H. Waadeland (1986) Further results on the computation of incomplete gamma functions. In Analytic Theory of Continued Fractions, II (Pitlochry/Aviemore, 1985), W. J. Thron (Ed.), Lecture Notes in Math. 1199, pp. 67–89.
  • W. B. Jones and W. J. Thron (1974) Numerical stability in evaluating continued fractions. Math. Comp. 28 (127), pp. 795–810.
  • W. B. Jones and W. J. Thron (1980) Continued Fractions: Analytic Theory and Applications. Encyclopedia of Mathematics and its Applications, Vol. 11, Addison-Wesley Publishing Co., Reading, MA.
  • W. B. Jones and W. Van Assche (1998) Asymptotic behavior of the continued fraction coefficients of a class of Stieltjes transforms including the Binet function. In Orthogonal functions, moment theory, and continued fractions (Campinas, 1996), Lecture Notes in Pure and Appl. Math., Vol. 199, pp. 257–274.
  • 20: Bibliography B
  • H. A. Bethe and E. E. Salpeter (1957) Quantum mechanics of one- and two-electron atoms. Springer-Verlag, Berlin.
  • L. C. Biedenharn and H. van Dam (Eds.) (1965) Quantum Theory of Angular Momentum. A Collection of Reprints and Original Papers. Academic Press, New York.
  • N. Bleistein (1966) Uniform asymptotic expansions of integrals with stationary point near algebraic singularity. Comm. Pure Appl. Math. 19, pp. 353–370.
  • S. Bochner (1952) Bessel functions and modular relations of higher type and hyperbolic differential equations. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (Tome Supplementaire), pp. 12–20.
  • W. Bosma and M.-P. van der Hulst (1990) Faster Primality Testing. In Advances in Cryptology—EUROCRYPT ’89 Proceedings, J.-J. Quisquater and J. Vandewalle (Eds.), Lecture Notes in Computer Science, Vol. 434, New York, pp. 652–656.