About the Project

Van%20Vleck%20theorem

AdvancedHelp

(0.003 seconds)

1—10 of 229 matching pages

1: 1.12 Continued Fractions
Pringsheim’s Theorem
Van Vleck’s Theorem
2: Bibliography
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 1103–1106.
  • M. Abramowitz (1949) Asymptotic expansions of spheroidal wave functions. J. Math. Phys. Mass. Inst. Tech. 28, pp. 195–199.
  • A. M. Al-Rashed and N. Zaheer (1985) Zeros of Stieltjes and Van Vleck polynomials and applications. J. Math. Anal. Appl. 110 (2), pp. 327–339.
  • W. A. Al-Salam (1990) Characterization theorems for orthogonal polynomials. In Orthogonal Polynomials (Columbus, OH, 1989), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 294, pp. 1–24.
  • M. Alam (1979) Zeros of Stieltjes and Van Vleck polynomials. Trans. Amer. Math. Soc. 252, pp. 197–204.
  • 3: Bibliography V
  • A. L. Van Buren, R. V. Baier, S. Hanish, and B. J. King (1972) Calculation of spheroidal wave functions. J. Acoust. Soc. Amer. 51, pp. 414–416.
  • A. L. Van Buren and J. E. Boisvert (2007) Accurate calculation of the modified Mathieu functions of integer order. Quart. Appl. Math. 65 (1), pp. 1–23.
  • Van Buren (website) Mathieu and Spheroidal Wave Functions: Fortran Programs for their Accurate Calculation
  • H. C. van de Hulst (1957) Light Scattering by Small Particles. John Wiley and Sons. Inc., New York.
  • H. C. van de Hulst (1980) Multiple Light Scattering. Vol. 1, Academic Press, New York.
  • 4: Staff
  • Tom H. Koornwinder, Universiteit van Amsterdam, Chap. 18

  • William P. Reinhardt, University of Washington, Chaps. 20, 22, 23

  • Peter L. Walker, American University of Sharjah, Chaps. 20, 22, 23

  • Tom H. Koornwinder, Universiteit van Amsterdam, for Chap. 18

  • William P. Reinhardt, University of Washington, for Chaps. 20, 22, 23

  • 5: 20 Theta Functions
    Chapter 20 Theta Functions
    6: 30.10 Series and Integrals
    For an addition theorem, see Meixner and Schäfke (1954, p. 300) and King and Van Buren (1973). …
    7: 31.15 Stieltjes Polynomials
    The V ( z ) are called Van Vleck polynomials and the corresponding S ( z ) Stieltjes polynomials. …
    31.15.2 j = 1 N γ j / 2 z k a j + j = 1 j k n 1 z k z j = 0 , k = 1 , 2 , , n .
    If t k is a zero of the Van Vleck polynomial V ( z ) , corresponding to an n th degree Stieltjes polynomial S ( z ) , and z 1 , z 2 , , z n 1 are the zeros of S ( z ) (the derivative of S ( z ) ), then t k is either a zero of S ( z ) or a solution of the equation … See Marden (1966), Alam (1979), and Al-Rashed and Zaheer (1985) for further results on the location of the zeros of Stieltjes and Van Vleck polynomials. …
    8: 27.15 Chinese Remainder Theorem
    §27.15 Chinese Remainder Theorem
    This theorem is employed to increase efficiency in calculating with large numbers by making use of smaller numbers in most of the calculation. …Their product m has 20 digits, twice the number of digits in the data. By the Chinese remainder theorem each integer in the data can be uniquely represented by its residues (mod m 1 ), (mod m 2 ), (mod m 3 ), and (mod m 4 ), respectively. …These numbers, in turn, are combined by the Chinese remainder theorem to obtain the final result ( mod m ) , which is correct to 20 digits. …
    9: 25.6 Integer Arguments
    25.6.3 ζ ( n ) = B n + 1 n + 1 , n = 1 , 2 , 3 , .
    25.6.4 ζ ( 2 n ) = 0 , n = 1 , 2 , 3 , .
    25.6.8 ζ ( 2 ) = 3 k = 1 1 k 2 ( 2 k k ) .
    25.6.9 ζ ( 3 ) = 5 2 k = 1 ( 1 ) k 1 k 3 ( 2 k k ) .
    25.6.10 ζ ( 4 ) = 36 17 k = 1 1 k 4 ( 2 k k ) .
    10: 19.35 Other Applications
    §19.35(i) Mathematical
    Generalizations of elliptic integrals appear in analysis of modular theorems of Ramanujan (Anderson et al. (2000)); analysis of Selberg integrals (Van Diejen and Spiridonov (2001)); use of Legendre’s relation (19.7.1) to compute π to high precision (Borwein and Borwein (1987, p. 26)). …