About the Project

Universit�� di Padova������������������������������CXFK69���vNg6

AdvancedHelp

Your search matched, but the results seem poor.

See Search Help for suggestions.

(0.001 seconds)

1—10 of 12 matching pages

1: Bibliography Z
  • R. Zanovello (1975) Sul calcolo numerico della funzione di Struve H ν ( z ) . Rend. Sem. Mat. Univ. e Politec. Torino 32, pp. 251–269 (Italian. English summary).
  • R. Zanovello (1977) Integrali di funzioni di Anger, Weber ed Airy-Hardy. Rend. Sem. Mat. Univ. Padova 58, pp. 275–285 (Italian).
  • R. Zanovello (1978) Su un integrale definito del prodotto di due funzioni di Struve. Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 112 (1-2), pp. 63–81 (Italian).
  • W. Zudilin (2007) Approximations to -, di- and tri-logarithms. J. Comput. Appl. Math. 202 (2), pp. 450–459.
  • 2: Wadim Zudilin
    He has been an Associate Professor at Moscow State University (Russia), an Ostrowski Fellow at Institut Henri Poincaré and Université Paris 6 (France), a Humboldt Fellow at the Cologne University (Germany) and a Visiting Researcher at the Max Planck Institute for Mathematics in Bonn (Germany). …
    3: Bibliography E
  • J. Écalle (1981a) Les fonctions résurgentes. Tome I. Université de Paris-Sud Département de Mathématique, Orsay (French).
  • J. Écalle (1981b) Les fonctions résurgentes. Tome II. Université de Paris-Sud Département de Mathématique, Orsay (French).
  • 4: 32.16 Physical Applications
    For applications in 2D quantum gravity and related aspects of the enumerative topology see Di Francesco et al. (1995). …
    5: DLMF Project News
    error generating summary
    6: Bibliography P
  • PARI-GP (free interactive system and C library)
  • 7: Bibliography T
  • F. G. Tricomi (1947) Sugli zeri delle funzioni di cui si conosce una rappresentazione asintotica. Ann. Mat. Pura Appl. (4) 26, pp. 283–300 (Italian).
  • F. G. Tricomi (1949) Sul comportamento asintotico dell’ n -esimo polinomio di Laguerre nell’intorno dell’ascissa 4 n . Comment. Math. Helv. 22, pp. 150–167.
  • 8: 1.4 Calculus of One Variable
    Faà Di Bruno’s Formula
    9: Bibliography D
  • P. Di Francesco, P. Ginsparg, and J. Zinn-Justin (1995) 2 D gravity and random matrices. Phys. Rep. 254 (1-2), pp. 1–133.
  • 10: Bibliography G
  • W. Gautschi (1979c) Un procedimento di calcolo per le funzioni gamma incomplete. Rend. Sem. Mat. Univ. Politec. Torino 37 (1), pp. 1–9 (Italian).