About the Project

Struve functions

AdvancedHelp

(0.003 seconds)

11—20 of 25 matching pages

11: 11.6 Asymptotic Expansions
§11.6(i) Large | z | , Fixed ν
§11.6(ii) Large | ν | , Fixed z
11.6.6 𝐊 ν ( λ ν ) ( 1 2 λ ν ) ν 1 π Γ ( ν + 1 2 ) k = 0 k ! c k ( λ ) ν k , | ph ν | 1 2 π δ ,
12: 11.13 Methods of Computation
§11.13(i) Introduction
Subsequent subsections treat the computation of Struve functions. …
13: 11.16 Software
§11.16(ii) Struve Functions
§11.16(iii) Integrals of Struve Functions
14: 11 Struve and Related Functions
Chapter 11 Struve and Related Functions
15: Richard B. Paris
16: 11.10 Anger–Weber Functions
11.10.22 𝐄 n ( z ) = 𝐇 n ( z ) + 1 π k = 0 m 1 Γ ( k + 1 2 ) Γ ( n + 1 2 k ) ( 1 2 z ) n 2 k 1 ,
11.10.23 𝐄 n ( z ) = 𝐇 n ( z ) + ( 1 ) n + 1 π k = 0 m 2 Γ ( n k 1 2 ) Γ ( k + 3 2 ) ( 1 2 z ) n + 2 k + 1 ,
m 2 = 1 2 n 3 2 .
11.10.26 𝐄 0 ( z ) = 𝐇 0 ( z ) , 𝐄 1 ( z ) = 2 π 𝐇 1 ( z ) .
17: Bibliography Z
  • R. Zanovello (1995) Numerical analysis of Struve functions with applications to other special functions. Ann. Numer. Math. 2 (1-4), pp. 199–208.
  • 18: Bibliography N
  • J. N. Newman (1984) Approximations for the Bessel and Struve functions. Math. Comp. 43 (168), pp. 551–556.
  • 19: Bibliography
  • R. M. Aarts and A. J. E. M. Janssen (2016) Efficient approximation of the Struve functions 𝐇 n occurring in the calculation of sound radiation quantities. The Journal of the Acoustical Society of America 140 (6), pp. 4154–4160.
  • M. M. Agrest, S. I. Labakhua, M. M. Rikenglaz, and Ts. Sh. Chachibaya (1982) Tablitsy funktsii Struve i integralov ot nikh. “Nauka”, Moscow (Russian).
  • A. Apelblat (1989) Derivatives and integrals with respect to the order of the Struve functions 𝐇 ν ( x ) and 𝐋 ν ( x ) . J. Math. Anal. Appl. 137 (1), pp. 17–36.
  • 20: Bibliography B
  • Á. Baricz and T. K. Pogány (2013) Integral representations and summations of the modified Struve function. Acta Math. Hungar. 141 (3), pp. 254–281.
  • R. F. Barrett (1964) Tables of modified Struve functions of orders zero and unity.
  • Yu. A. Brychkov and K. O. Geddes (2005) On the derivatives of the Bessel and Struve functions with respect to the order. Integral Transforms Spec. Funct. 16 (3), pp. 187–198.