About the Project

Stokes%20multipliers

AdvancedHelp

(0.003 seconds)

1—10 of 129 matching pages

1: 36.5 Stokes Sets
§36.5 Stokes Sets
§36.5(i) Definitions
§36.5(ii) Cuspoids
Elliptic Umbilic Stokes Set (Codimension three)
§36.5(iv) Visualizations
2: 2.11 Remainder Terms; Stokes Phenomenon
§2.11 Remainder Terms; Stokes Phenomenon
§2.11(iv) Stokes Phenomenon
That the change in their forms is discontinuous, even though the function being approximated is analytic, is an example of the Stokes phenomenon. Where should the change-over take place? Can it be accomplished smoothly? … For higher-order Stokes phenomena see Olde Daalhuis (2004b) and Howls et al. (2004). …
3: Bibliography O
  • A. B. Olde Daalhuis and F. W. J. Olver (1995b) On the calculation of Stokes multipliers for linear differential equations of the second order. Methods Appl. Anal. 2 (3), pp. 348–367.
  • A. B. Olde Daalhuis (2004b) On higher-order Stokes phenomena of an inhomogeneous linear ordinary differential equation. J. Comput. Appl. Math. 169 (1), pp. 235–246.
  • J. Oliver (1977) An error analysis of the modified Clenshaw method for evaluating Chebyshev and Fourier series. J. Inst. Math. Appl. 20 (3), pp. 379–391.
  • 4: Bibliography P
  • R. B. Paris and A. D. Wood (1995) Stokes phenomenon demystified. Bull. Inst. Math. Appl. 31 (1-2), pp. 21–28.
  • R. B. Paris (1992a) Smoothing of the Stokes phenomenon for high-order differential equations. Proc. Roy. Soc. London Ser. A 436, pp. 165–186.
  • R. B. Paris (1992b) Smoothing of the Stokes phenomenon using Mellin-Barnes integrals. J. Comput. Appl. Math. 41 (1-2), pp. 117–133.
  • R. B. Paris (2005b) The Stokes phenomenon associated with the Hurwitz zeta function ζ ( s , a ) . Proc. Roy. Soc. London Ser. A 461, pp. 297–304.
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • 5: 2.7 Differential Equations
    w 2 ( z ) = e 2 π i μ 2 w 2 ( z e 2 π i ) + C 2 w 1 ( z ) ,
    in which C 1 , C 2 are constants, the so-called Stokes multipliers. … For the calculation of Stokes multipliers see Olde Daalhuis and Olver (1995b). …
    6: Bibliography I
  • K. Inkeri (1959) The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I 37, pp. 1–20.
  • A. R. Its and A. A. Kapaev (2003) Quasi-linear Stokes phenomenon for the second Painlevé transcendent. Nonlinearity 16 (1), pp. 363–386.
  • 7: Bibliography W
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • R. Wong and Y.-Q. Zhao (1999a) Smoothing of Stokes’s discontinuity for the generalized Bessel function. II. Proc. Roy. Soc. London Ser. A 455, pp. 3065–3084.
  • R. Wong and Y.-Q. Zhao (1999b) Smoothing of Stokes’s discontinuity for the generalized Bessel function. Proc. Roy. Soc. London Ser. A 455, pp. 1381–1400.
  • F. J. Wright (1980) The Stokes set of the cusp diffraction catastrophe. J. Phys. A 13 (9), pp. 2913–2928.
  • 8: Bibliography B
  • M. V. Berry and C. J. Howls (1990) Stokes surfaces of diffraction catastrophes with codimension three. Nonlinearity 3 (2), pp. 281–291.
  • M. V. Berry and C. J. Howls (1994) Overlapping Stokes smoothings: Survival of the error function and canonical catastrophe integrals. Proc. Roy. Soc. London Ser. A 444, pp. 201–216.
  • M. V. Berry (1989) Uniform asymptotic smoothing of Stokes’s discontinuities. Proc. Roy. Soc. London Ser. A 422, pp. 7–21.
  • M. V. Berry (1991) Infinitely many Stokes smoothings in the gamma function. Proc. Roy. Soc. London Ser. A 434, pp. 465–472.
  • W. G. C. Boyd (1990b) Stieltjes transforms and the Stokes phenomenon. Proc. Roy. Soc. London Ser. A 429, pp. 227–246.
  • 9: 7.20 Mathematical Applications
    For applications of the complementary error function in uniform asymptotic approximations of integrals—saddle point coalescing with a pole or saddle point coalescing with an endpoint—see Wong (1989, Chapter 7), Olver (1997b, Chapter 9), and van der Waerden (1951). The complementary error function also plays a ubiquitous role in constructing exponentially-improved asymptotic expansions and providing a smooth interpretation of the Stokes phenomenon; see §§2.11(iii) and 2.11(iv). …
    10: Bibliography K
  • A. A. Kapaev (1991) Essential singularity of the Painlevé function of the second kind and the nonlinear Stokes phenomenon. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 187, pp. 139–170 (Russian).
  • A. A. Kapaev (2004) Quasi-linear Stokes phenomenon for the Painlevé first equation. J. Phys. A 37 (46), pp. 11149–11167.
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.