About the Project
NIST

Stokes multipliers

AdvancedHelp

(0.001 seconds)

3 matching pages

1: 2.7 Differential Equations
w 2 ( z ) = e - 2 π i μ 2 w 2 ( z e 2 π i ) + C 2 w 1 ( z ) ,
in which C 1 , C 2 are constants, the so-called Stokes multipliers. … For the calculation of Stokes multipliers see Olde Daalhuis and Olver (1995b). …
2: Bibliography O
  • A. B. Olde Daalhuis and F. W. J. Olver (1995b) On the calculation of Stokes multipliers for linear differential equations of the second order. Methods Appl. Anal. 2 (3), pp. 348–367.
  • 3: 2.11 Remainder Terms; Stokes Phenomenon
    2.11.20 R n ( 1 ) ( z ) = ( - 1 ) n - 1 i e ( μ 2 - μ 1 ) π i e λ 2 z z μ 2 ( C 1 s = 0 m - 1 ( - 1 ) s a s , 2 F n + μ 2 - μ 1 - s ( z ) z s + R m , n ( 1 ) ( z ) ) ,
    2.11.21 R n ( 2 ) ( z ) = ( - 1 ) n i e ( μ 2 - μ 1 ) π i e λ 1 z z μ 1 ( C 2 s = 0 m - 1 ( - 1 ) s a s , 1 F n + μ 1 - μ 2 - s ( z e - π i ) z s + R m , n ( 2 ) ( z ) ) ,