# Stokes multipliers

(0.001 seconds)

## 3 matching pages

##### 1: 2.7 Differential Equations
$w_{2}(z)=e^{-2\pi i\mu_{2}}w_{2}(ze^{2\pi i})+C_{2}w_{1}(z),$
in which $C_{1}$, $C_{2}$ are constants, the so-called Stokes multipliers. … For the calculation of Stokes multipliers see Olde Daalhuis and Olver (1995b). …
##### 2: Bibliography O
• A. B. Olde Daalhuis and F. W. J. Olver (1995b) On the calculation of Stokes multipliers for linear differential equations of the second order. Methods Appl. Anal. 2 (3), pp. 348–367.
• ##### 3: 2.11 Remainder Terms; Stokes Phenomenon
2.11.20 $R_{n}^{(1)}(z)=(-1)^{n-1}ie^{(\mu_{2}-\mu_{1})\pi i}e^{\lambda_{2}z}z^{\mu_{2}% }\left(C_{1}\sum_{s=0}^{m-1}(-1)^{s}a_{s,2}\frac{F_{n+\mu_{2}-\mu_{1}-s}\left(% z\right)}{z^{s}}+R_{m,n}^{(1)}(z)\right),$
2.11.21 $R_{n}^{(2)}(z)=(-1)^{n}ie^{(\mu_{2}-\mu_{1})\pi i}e^{\lambda_{1}z}z^{\mu_{1}}% \left(C_{2}\sum_{s=0}^{m-1}(-1)^{s}a_{s,1}\frac{F_{n+\mu_{1}-\mu_{2}-s}\left(% ze^{-\pi i}\right)}{z^{s}}+R_{m,n}^{(2)}(z)\right),$