Stirling numbers (first and second kinds)
(0.005 seconds)
1—10 of 18 matching pages
1: 26.8 Set Partitions: Stirling Numbers
2: 26.1 Special Notation
…
►
►
…
►
►
…
►Other notations for , the Stirling numbers of the first kind, include (Abramowitz and Stegun (1964, Chapter 24), Fort (1948)), (Jordan (1939), Moser and Wyman (1958a)), (Milne-Thomson (1933)), (Carlitz (1960), Gould (1960)), (Knuth (1992), Graham et al. (1994), Rosen et al. (2000)).
►Other notations for , the Stirling numbers of the second kind, include (Fort (1948)), (Jordan (1939)), (Moser and Wyman (1958b)), (Milne-Thomson (1933)), (Carlitz (1960), Gould (1960)), (Knuth (1992), Graham et al. (1994), Rosen et al. (2000)), and also an unconventional symbol in Abramowitz and Stegun (1964, Chapter 24).
real variable. | |
… |
binomial coefficient. | |
… | |
Stirling numbers of the first kind. | |
Stirling numbers of the second kind. |
3: 26.17 The Twelvefold Way
4: 26.21 Tables
§26.21 Tables
►Abramowitz and Stegun (1964, Chapter 24) tabulates binomial coefficients for up to 50 and up to 25; extends Table 26.4.1 to ; tabulates Stirling numbers of the first and second kinds, and , for up to 25 and up to ; tabulates partitions and partitions into distinct parts for up to 500. … ►It also contains a table of Gaussian polynomials up to . …5: 26.13 Permutations: Cycle Notation
…
►The Stirling cycle numbers of the first kind, denoted by , count the number of permutations of with exactly cycles.
They are related to Stirling numbers of the first kind by
►
26.13.3
…
6: 24.15 Related Sequences of Numbers
…
►The Stirling numbers of the first kind
, and the second kind
, are as defined in §26.8(i).
…
►
24.15.7
►
24.15.8
…
►
24.15.9
,
►
24.15.10
.
…
7: 26.7 Set Partitions: Bell Numbers
8: 4.13 Lambert -Function
…
►For the definition of Stirling cycle numbers of the first kind
see (26.13.3).
…
►
4.13.10
…
►
4.13.11
…
9: 26.14 Permutations: Order Notation
…
►In this subsection is again the Stirling number of the second kind (§26.8), and is the th Bernoulli number (§24.2(i)).
…
►
26.14.7
…
►
26.14.12
, .
…