Stirling formula
(0.000 seconds)
10 matching pages
1: 5.11 Asymptotic Expansions
…
►For explicit formulas for in terms of Stirling numbers see Nemes (2013a), and for asymptotic expansions of as see Boyd (1994) and Nemes (2015a).
►
Terminology
►The expansion (5.11.1) is called Stirling’s series (Whittaker and Watson (1927, §12.33)), whereas the expansion (5.11.3), or sometimes just its leading term, is known as Stirling’s formula (Abramowitz and Stegun (1964, §6.1), Olver (1997b, p. 88)). …2: Bibliography M
…
►
The -analogue of Stirling’s formula.
Rocky Mountain J. Math. 14 (2), pp. 403–413.
…
3: Bibliography S
…
►
Calculation of the gamma function by Stirling’s formula.
Math. Comp. 25 (114), pp. 317–322.
…
4: 8.11 Asymptotic Approximations and Expansions
…
►This reference also contains explicit formulas for in terms of Stirling numbers and for the case an asymptotic expansion for as .
…
►This reference also contains explicit formulas for the coefficients in terms of Stirling numbers.
…
5: Bibliography G
…
►
Contiguous relations and summation and transformation formulae for basic hypergeometric series.
J. Difference Equ. Appl. 19 (12), pp. 2029–2042.
…
►
Construction of Gauss-Christoffel quadrature formulas.
Math. Comp. 22, pp. 251–270.
…
►
Tables of binomial coefficients and Stirling numbers.
J. Res. Nat. Bur. Standards Sect. B 80B (1), pp. 99–171.
…
►
Stirling number representation problems.
Proc. Amer. Math. Soc. 11 (3), pp. 447–451.
►
Explicit formulas for Bernoulli numbers.
Amer. Math. Monthly 79, pp. 44–51.
…
6: Bibliography J
…
►
Tables of Functions with Formulae and Curves.
4th edition, Dover Publications, New York.
…
►
Sur l’inversion de au moyen des nombres de Stirling associés.
C. R. Acad. Sci. Paris Sér. I Math. 320 (12), pp. 1449–1452.
►
Stirling Numbers, Lambert W and the Gamma Function.
In Mathematical Aspects of Computer and Information Sciences, J. Blömer, I. S. Kotsireas, T. Kutsia, and D. E. Simos (Eds.),
Cham, pp. 275–279.
…
►
Asymptotic formulas for the zeros of the Meixner polynomials.
J. Approx. Theory 96 (2), pp. 281–300.
…
►
Efficient implementation of the Hardy-Ramanujan-Rademacher formula.
LMS J. Comput. Math. 15, pp. 341–359.
…
7: 4.13 Lambert -Function
…
►
4.13.5_2
.
…
►See Jeffrey and Murdoch (2017) for an explicit representation for the in terms of associated Stirling numbers.
…
►For the definition of Stirling cycle numbers of the first kind see (26.13.3).
…
►
4.13.10
…
►
4.13.11
…
8: Bibliography B
…
►
Mathieu functions of general order: Connection formulae, base functions and asymptotic formulae. I–V.
Philos. Trans. Roy. Soc. London Ser. A 301, pp. 75–162.
…
►
Character analogues of the Poisson and Euler-MacLaurin summation formulas with applications.
J. Number Theory 7 (4), pp. 413–445.
►
Periodic Bernoulli numbers, summation formulas and applications.
In Theory and Application of Special Functions (Proc. Advanced
Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis.,
1975),
pp. 143–189.
…
►
Asymptotics of Stirling numbers of the second kind.
Proc. Amer. Math. Soc. 42 (2), pp. 575–580.
…
►
A uniform asymptotic formula for orthogonal polynomials associated with
.
J. Approx. Theory 98, pp. 146–166.
…
9: Bibliography C
…
►
A quadrature formula for the Hankel transform.
Numer. Algorithms 9 (2), pp. 343–354.
…
►
A recurrence formula for
.
Proc. Amer. Math. Soc. 12 (6), pp. 991–992.
…
►
Asymptotic estimates for generalized Stirling numbers.
Analysis (Munich) 20 (1), pp. 1–13.
…
►
An extension of a Kummer’s quadratic transformation formula with an application.
Proc. Jangjeon Math. Soc. 16 (2), pp. 229–235.
…
►
An encyclopaedia of cubature formulas.
J. Complexity 19 (3), pp. 445–453.
…
10: Errata
…
►
§17.6
…
►
Subsection 17.9(iii)
…
►
Paragraph Inversion Formula (in §35.2)
…
►
Usability
…
►
Table 26.8.1
…
Just above §17.6(i) a paragraph Analytic Continuation was inserted describing the analytic continuation of the formulas which follow.
The title of the paragraph which was previously “Gasper’s -Analog of Clausen’s Formula” has been changed to “Gasper’s -Analog of Clausen’s Formula (16.12.2)”.
The wording was changed to make the integration variable more apparent.
Additional keywords are being added to formulas (an ongoing project); these are visible in the associated ‘info boxes’ linked to the icons to the right of each formula, and provide better search capabilities.
Originally the Stirling number was given incorrectly as 6327. The correct number is 63273.
10 |
Reported 2013-11-25 by Svante Janson.