# Schwarz reflection principle

(0.001 seconds)

## 1—10 of 47 matching pages

##### 4: 25.4 Reflection Formulas
###### §25.4 Reflection Formulas
25.4.3 $\xi\left(s\right)=\xi\left(1-s\right),$
##### 6: Bibliography G
• M. B. Green, J. H. Schwarz, and E. Witten (1988a) Superstring Theory: Introduction, Vol. 1. 2nd edition, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge.
• M. B. Green, J. H. Schwarz, and E. Witten (1988b) Superstring Theory: Loop Amplitudes, Anomalies and Phenomenolgy, Vol. 2. 2nd edition, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge.
• ##### 7: 5.21 Methods of Computation
For the left half-plane we can continue the backward recurrence or make use of the reflection formula (5.5.3). …
##### 8: Preface
The term digital library has gained acceptance for this kind of information resource, and our choice of project title reflects our hope that the NIST DLMF will be a vehicle for revolutionizing the way applicable mathematics in general is practiced and delivered.
##### 9: 5.5 Functional Relations
###### §5.5(ii) Reflection
5.5.3 $\Gamma\left(z\right)\Gamma\left(1-z\right)=\pi/\sin\left(\pi z\right),$ $z\neq 0,\pm 1,\dots$,
##### 10: 28.12 Definitions and Basic Properties
28.12.2 $\lambda_{\nu}\left(-q\right)=\lambda_{\nu}\left(q\right)=\lambda_{-\nu}\left(q% \right).$
28.12.15 $\mathrm{se}_{\nu}\left(z,q\right)=-\mathrm{se}_{\nu}\left(-z,q\right)=-\mathrm% {se}_{-\nu}\left(z,q\right).$