About the Project

Saalschützian

AdvancedHelp

(0.000 seconds)

7 matching pages

1: 24.1 Special Notation
It was used in Saalschütz (1893), Nielsen (1923), Schwatt (1962), and Whittaker and Watson (1927). …
2: 35.8 Generalized Hypergeometric Functions of Matrix Argument
Pfaff–Saalschütz Formula
3: 16.4 Argument Unity
When k = 1 the function is said to be balanced or Saalschützian. …
Pfaff–Saalschütz Balanced Sum
4: 17.4 Basic Hypergeometric Functions
The series (17.4.1) is said to be balanced or Saalschützian when it terminates, r = s , z = q , and …
5: 17.7 Special Cases of Higher ϕ s r Functions
q -Pfaff–Saalschütz Sum
Nonterminating Form of the q -Saalschütz Sum
6: Bibliography K
  • Y. S. Kim, A. K. Rathie, and R. B. Paris (2013) An extension of Saalschütz’s summation theorem for the series F r + 2 r + 3 . Integral Transforms Spec. Funct. 24 (11), pp. 916–921.
  • 7: Bibliography S
  • L. Saalschütz (1893) Vorlesungen über die Bernoullischen Zahlen, ihren Zusammenhang mit den Secanten-Coefficienten und ihre wichtigeren Anwendungen. Springer-Verlag, Berlin (German).