About the Project

SL%282%2CZ%29 bilinear transformation

AdvancedHelp

(0.004 seconds)

11—20 of 821 matching pages

11: Bibliography B
  • W. N. Bailey (1928) Products of generalized hypergeometric series. Proc. London Math. Soc. (2) 28 (2), pp. 242–254.
  • W. N. Bailey (1929) Transformations of generalized hypergeometric series. Proc. London Math. Soc. (2) 29 (2), pp. 495–502.
  • E. Berti and V. Cardoso (2006) Quasinormal ringing of Kerr black holes: The excitation factors. Phys. Rev. D 74 (104020), pp. 1–27.
  • S. Bochner (1929) Über Sturm-Liouvillesche Polynomsysteme. Math. Z. 29 (1), pp. 730–736.
  • J. G. Byatt-Smith (2000) The Borel transform and its use in the summation of asymptotic expansions. Stud. Appl. Math. 105 (2), pp. 83–113.
  • 12: Bibliography
  • L. V. Ahlfors (1966) Complex Analysis: An Introduction of the Theory of Analytic Functions of One Complex Variable. 2nd edition, McGraw-Hill Book Co., New York.
  • S. Ahmed and M. E. Muldoon (1980) On the zeros of confluent hypergeometric functions. III. Characterization by means of nonlinear equations. Lett. Nuovo Cimento (2) 29 (11), pp. 353–358.
  • F. V. Andreev and A. V. Kitaev (2002) Transformations R S 4 2 ( 3 ) of the ranks 4 and algebraic solutions of the sixth Painlevé equation. Comm. Math. Phys. 228 (1), pp. 151–176.
  • G. E. Andrews (1972) Summations and transformations for basic Appell series. J. London Math. Soc. (2) 4, pp. 618–622.
  • V. I. Arnol’d (1974) Normal forms of functions in the neighborhood of degenerate critical points. Uspehi Mat. Nauk 29 (2(176)), pp. 11–49 (Russian).
  • 13: 6.14 Integrals
    §6.14(i) Laplace Transforms
    6.14.2 0 e a t Ci ( t ) d t = 1 2 a ln ( 1 + a 2 ) , a > 0 ,
    6.14.4 0 E 1 2 ( t ) d t = 2 ln 2 ,
    6.14.6 0 Ci 2 ( t ) d t = 0 si 2 ( t ) d t = 1 2 π ,
    For collections of integrals, see Apelblat (1983, pp. 110–123), Bierens de Haan (1939, pp. 373–374, 409, 479, 571–572, 637, 664–673, 680–682, 685–697), Erdélyi et al. (1954a, vol. 1, pp. 40–42, 96–98, 177–178, 325), Geller and Ng (1969), Gradshteyn and Ryzhik (2000, §§5.2–5.3 and 6.2–6.27), Marichev (1983, pp. 182–184), Nielsen (1906b), Oberhettinger (1974, pp. 139–141), Oberhettinger (1990, pp. 53–55 and 158–160), Oberhettinger and Badii (1973, pp. 172–179), Prudnikov et al. (1986b, vol. 2, pp. 24–29 and 64–92), Prudnikov et al. (1992a, §§3.4–3.6), Prudnikov et al. (1992b, §§3.4–3.6), and Watrasiewicz (1967).
    14: 32.2 Differential Equations
    They are distinct modulo Möbius (bilinear) transformationsIn P III , if w ( z ) = ζ 1 / 2 u ( ζ ) with ζ = z 2 , then … In P IV , if w ( z ) = 2 2 ( u ( ζ ) ) 2 with ζ = 2 z and α = 2 ν + 1 , then … where μ 1 , μ 2 , μ 3 are constants, f 1 , f 2 , f 3 are functions of z , with … where μ 1 , μ 2 , μ 3 , μ 4 are constants, f 1 , f 2 , f 3 , f 4 are functions of z , with …
    15: 29 Lamé Functions
    Chapter 29 Lamé Functions
    16: 4.17 Special Values and Limits
    Table 4.17.1: Trigonometric functions: values at multiples of 1 12 π .
    θ sin θ cos θ tan θ csc θ sec θ cot θ
    π / 12 1 4 2 ( 3 1 ) 1 4 2 ( 3 + 1 ) 2 3 2 ( 3 + 1 ) 2 ( 3 1 ) 2 + 3
    π / 4 1 2 2 1 2 2 1 2 2 1
    2 π / 3 1 2 3 1 2 3 2 3 3 2 1 3 3
    3 π / 4 1 2 2 1 2 2 1 2 2 1
    4.17.3 lim z 0 1 cos z z 2 = 1 2 .
    17: Bibliography O
  • A. B. Olde Daalhuis and F. W. J. Olver (1995a) Hyperasymptotic solutions of second-order linear differential equations. I. Methods Appl. Anal. 2 (2), pp. 173–197.
  • A. B. Olde Daalhuis (1995) Hyperasymptotic solutions of second-order linear differential equations. II. Methods Appl. Anal. 2 (2), pp. 198–211.
  • A. B. Olde Daalhuis (1998a) Hyperasymptotic solutions of higher order linear differential equations with a singularity of rank one. Proc. Roy. Soc. London Ser. A 454, pp. 1–29.
  • A. B. Olde Daalhuis (2004a) Inverse factorial-series solutions of difference equations. Proc. Edinb. Math. Soc. (2) 47 (2), pp. 421–448.
  • F. W. J. Olver (1974) Error bounds for stationary phase approximations. SIAM J. Math. Anal. 5 (1), pp. 19–29.
  • 18: 26.4 Lattice Paths: Multinomial Coefficients and Set Partitions
    For k = 2 M 2 is the number of permutations of { 1 , 2 , , n } with a 1 cycles of length 1, a 2 cycles of length 2, , and a n cycles of length n : … M 3 is the number of set partitions of { 1 , 2 , , n } with a 1 subsets of size 1, a 2 subsets of size 2, , and a n subsets of size n : …For each n all possible values of a 1 , a 2 , , a n are covered. … where the summation is over all nonnegative integers n 1 , n 2 , , n k such that n 1 + n 2 + + n k = n . …
    19: 1.9 Calculus of a Complex Variable
    Bilinear Transformation
    The cross ratio of z 1 , z 2 , z 3 , z 4 { } is defined by …or its limiting form, and is invariant under bilinear transformations. Other names for the bilinear transformation are fractional linear transformation, homographic transformation, and Möbius transformation. …
    20: 28.15 Expansions for Small q
    28.15.1 λ ν ( q ) = ν 2 + 1 2 ( ν 2 1 ) q 2 + 5 ν 2 + 7 32 ( ν 2 1 ) 3 ( ν 2 4 ) q 4 + 9 ν 4 + 58 ν 2 + 29 64 ( ν 2 1 ) 5 ( ν 2 4 ) ( ν 2 9 ) q 6 + .
    28.15.2 a ν 2 q 2 a ( ν + 2 ) 2 q 2 a ( ν + 4 ) 2 = q 2 a ( ν 2 ) 2 q 2 a ( ν 4 ) 2 .
    28.15.3 me ν ( z , q ) = e i ν z q 4 ( 1 ν + 1 e i ( ν + 2 ) z 1 ν 1 e i ( ν 2 ) z ) + q 2 32 ( 1 ( ν + 1 ) ( ν + 2 ) e i ( ν + 4 ) z + 1 ( ν 1 ) ( ν 2 ) e i ( ν 4 ) z 2 ( ν 2 + 1 ) ( ν 2 1 ) 2 e i ν z ) + ;