About the Project

Rydberg constant

AdvancedHelp

(0.001 seconds)

1—10 of 435 matching pages

1: 33.22 Particle Scattering and Atomic and Molecular Spectra
§33.22(i) Schrödinger Equation
With e denoting here the elementary charge, the Coulomb potential between two point particles with charges Z 1 e , Z 2 e and masses m 1 , m 2 separated by a distance s is V ( s ) = Z 1 Z 2 e 2 / ( 4 π ε 0 s ) = Z 1 Z 2 α c / s , where Z j are atomic numbers, ε 0 is the electric constant, α is the fine structure constant, and is the reduced Planck’s constant. The reduced mass is m = m 1 m 2 / ( m 1 + m 2 ) , and at energy of relative motion E with relative orbital angular momentum , the Schrödinger equation for the radial wave function w ( s ) is given by … For Z 1 Z 2 = 1 and m = m e , the electron mass, the scaling factors in (33.22.5) reduce to the Bohr radius, a 0 = / ( m e c α ) , and to a multiple of the Rydberg constant, R = m e c α 2 / ( 2 ) . …
2: Bibliography H
  • M. H. Halley, D. Delande, and K. T. Taylor (1993) The combination of R -matrix and complex coordinate methods: Application to the diamagnetic Rydberg spectra of Ba and Sr. J. Phys. B 26 (12), pp. 1775–1790.
  • A. J. S. Hamilton (2001) Formulae for growth factors in expanding universes containing matter and a cosmological constant. Monthly Notices Roy. Astronom. Soc. 322 (2), pp. 419–425.
  • G. H. Hardy (1912) Note on Dr. Vacca’s series for γ . Quart. J. Math. 43, pp. 215–216.
  • 3: Bibliography
  • A. Abramov (1960) Tables of ln Γ ( z ) for Complex Argument. Pergamon Press, New York.
  • H. Appel (1968) Numerical Tables for Angular Correlation Computations in α -, β - and γ -Spectroscopy: 3 j -, 6 j -, 9 j -Symbols, F- and Γ -Coefficients. Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, Springer-Verlag.
  • M. Aymar, C. H. Greene, and E. Luc-Koenig (1996) Multichannel Rydberg spectroscopy of complex atoms. Reviews of Modern Physics 68, pp. 1015–1123.
  • 4: 3.12 Mathematical Constants
    §3.12 Mathematical Constants
    The fundamental constant …Other constants that appear in the DLMF include the base e of natural logarithms …see §4.2(ii), and Euler’s constant γ For access to online high-precision numerical values of mathematical constants see Sloane (2003). …
    5: 30.1 Special Notation
    x real variable. Except in §§30.7(iv), 30.11(ii), 30.13, and 30.14, 1 < x < 1 .
    δ arbitrary small positive constant.
    The main functions treated in this chapter are the eigenvalues λ n m ( γ 2 ) and the spheroidal wave functions 𝖯𝗌 n m ( x , γ 2 ) , 𝖰𝗌 n m ( x , γ 2 ) , 𝑃𝑠 n m ( z , γ 2 ) , 𝑄𝑠 n m ( z , γ 2 ) , and S n m ( j ) ( z , γ ) , j = 1 , 2 , 3 , 4 . …Meixner and Schäfke (1954) use ps , qs , Ps , Qs for 𝖯𝗌 , 𝖰𝗌 , 𝑃𝑠 , 𝑄𝑠 , respectively. … Flammer (1957) and Abramowitz and Stegun (1964) use λ m n ( γ ) for λ n m ( γ 2 ) + γ 2 , R m n ( j ) ( γ , z ) for S n m ( j ) ( z , γ ) , and …where d m n ( γ ) is a normalization constant determined by …
    6: 16.15 Integral Representations and Integrals
    16.15.1 F 1 ( α ; β , β ; γ ; x , y ) = Γ ( γ ) Γ ( α ) Γ ( γ α ) 0 1 u α 1 ( 1 u ) γ α 1 ( 1 u x ) β ( 1 u y ) β d u , α > 0 , ( γ α ) > 0 ,
    16.15.2 F 2 ( α ; β , β ; γ , γ ; x , y ) = Γ ( γ ) Γ ( γ ) Γ ( β ) Γ ( β ) Γ ( γ β ) Γ ( γ β ) 0 1 0 1 u β 1 v β 1 ( 1 u ) γ β 1 ( 1 v ) γ β 1 ( 1 u x v y ) α d u d v , γ > β > 0 , γ > β > 0 ,
    16.15.3 F 3 ( α , α ; β , β ; γ ; x , y ) = Γ ( γ ) Γ ( β ) Γ ( β ) Γ ( γ β β ) Δ u β 1 v β 1 ( 1 u v ) γ β β 1 ( 1 u x ) α ( 1 v y ) α d u d v , ( γ β β ) > 0 , β > 0 , β > 0 ,
    16.15.4 F 4 ( α , β ; γ , γ ; x ( 1 y ) , y ( 1 x ) ) = Γ ( γ ) Γ ( γ ) Γ ( α ) Γ ( β ) Γ ( γ α ) Γ ( γ β ) 0 1 0 1 u α 1 v β 1 ( 1 u ) γ α 1 ( 1 v ) γ β 1 ( 1 u x ) γ + γ α 1 ( 1 v y ) γ + γ β 1 ( 1 u x v y ) α + β γ γ + 1 d u d v , γ > α > 0 , γ > β > 0 .
    7: 32.9 Other Elementary Solutions
    with κ , λ , μ , and ν arbitrary constants. … with C an arbitrary constant, which is solvable by quadrature. … with κ and μ arbitrary constants. … with C an arbitrary constant, which is solvable by quadrature. … with κ and μ arbitrary constants. …
    8: 5.17 Barnes’ G -Function (Double Gamma Function)
    G ( z + 1 ) = Γ ( z ) G ( z ) ,
    Here B 2 k + 2 is the Bernoulli number (§24.2(i)), and A is Glaisher’s constant, given by
    5.17.6 A = e C = 1.28242 71291 00622 63687 ,
    5.17.7 C = lim n ( k = 1 n k ln k ( 1 2 n 2 + 1 2 n + 1 12 ) ln n + 1 4 n 2 ) = γ + ln ( 2 π ) 12 ζ ( 2 ) 2 π 2 = 1 12 ζ ( 1 ) ,
    For Glaisher’s constant see also Greene and Knuth (1982, p. 100) and §2.10(i).
    9: 30.5 Functions of the Second Kind
    Other solutions of (30.2.1) with μ = m , λ = λ n m ( γ 2 ) , and z = x are
    30.5.1 𝖰𝗌 n m ( x , γ 2 ) , n = m , m + 1 , m + 2 , .
    30.5.2 𝖰𝗌 n m ( x , γ 2 ) = ( 1 ) n m + 1 𝖰𝗌 n m ( x , γ 2 ) ,
    30.5.4 𝒲 { 𝖯𝗌 n m ( x , γ 2 ) , 𝖰𝗌 n m ( x , γ 2 ) } = ( n + m ) ! ( 1 x 2 ) ( n m ) ! A n m ( γ 2 ) A n m ( γ 2 ) ( 0 ) ,
    with A n ± m ( γ 2 ) as in (30.11.4). …
    10: 16.16 Transformations of Variables
    16.16.5 F 3 ( α , γ α ; β , γ β ; γ ; x , y ) = ( 1 y ) α + β γ F 1 2 ( α , β γ ; x + y x y ) ,
    16.16.5_5 F 4 ( α , β ; γ , β ; x ( 1 y ) , y ( 1 x ) ) = ( 1 x ) α ( 1 y ) α F 1 ( α ; γ β , α γ + 1 ; γ ; x x 1 , x y ( 1 x ) ( 1 y ) ) ,
    16.16.7 F 4 ( α , β ; γ , γ ; x ( 1 y ) , y ( 1 x ) ) = k = 0 ( α ) k ( β ) k ( α + β γ γ + 1 ) k ( γ ) k ( γ ) k k ! x k y k F 1 2 ( α + k , β + k γ + k ; x ) F 1 2 ( α + k , β + k γ + k ; y ) ;
    16.16.9 F 2 ( α ; β , β ; γ , γ ; x , y ) = ( 1 x ) α F 2 ( α ; γ β , β ; γ , γ ; x x 1 , y 1 x ) ,
    16.16.10 F 4 ( α , β ; γ , γ ; x , y ) = Γ ( γ ) Γ ( β α ) Γ ( γ α ) Γ ( β ) ( y ) α F 4 ( α , α γ + 1 ; γ , α β + 1 ; x y , 1 y ) + Γ ( γ ) Γ ( α β ) Γ ( γ β ) Γ ( α ) ( y ) β F 4 ( β , β γ + 1 ; γ , β α + 1 ; x y , 1 y ) .