About the Project

Riemann?Lebesgue lemma

AdvancedHelp

(0.012 seconds)

1—10 of 21 matching pages

1: 17.12 Bailey Pairs
Weak Bailey Lemma
Strong Bailey Lemma
2: 2.3 Integrals of a Real Variable
§2.3(ii) Watson’s Lemma
(In other words, differentiation of (2.3.8) with respect to the parameter λ (or μ ) is legitimate.) … Watson’s lemma can be regarded as a special case of this result. For error bounds for Watson’s lemma and Laplace’s method see Boyd (1993) and Olver (1997b, Chapter 3). … The first result is the analog of Watson’s lemma2.3(ii)). …
3: 2.4 Contour Integrals
§2.4(i) Watson’s Lemma
If this integral converges uniformly at each limit for all sufficiently large t , then by the Riemann–Lebesgue lemma1.8(i)) …
4: 1.8 Fourier Series
Riemann–Lebesgue Lemma
5: 1.10 Functions of a Complex Variable
Schwarz’s Lemma
6: 6.12 Asymptotic Expansions
7: Bibliography
  • G. E. Andrews and A. Berkovich (1998) A trinomial analogue of Bailey’s lemma and N = 2 superconformal invariance. Comm. Math. Phys. 192 (2), pp. 245–260.
  • G. E. Andrews (2001) Bailey’s Transform, Lemma, Chains and Tree. In Special Functions 2000: Current Perspective and Future Directions (Tempe, AZ), J. Bustoz, M. E. H. Ismail, and S. K. Suslov (Eds.), NATO Sci. Ser. II Math. Phys. Chem., Vol. 30, pp. 1–22.
  • 8: Bibliography W
  • S. O. Warnaar (1998) A note on the trinomial analogue of Bailey’s lemma. J. Combin. Theory Ser. A 81 (1), pp. 114–118.
  • 9: 7.12 Asymptotic Expansions
    10: 11.6 Asymptotic Expansions