About the Project

Riemann with characteristics

AdvancedHelp

(0.001 seconds)

10 matching pages

1: 21.2 Definitions
§21.2(ii) Riemann Theta Functions with Characteristics
21.2.5 θ [ 𝜶 𝜷 ] ( 𝐳 | 𝛀 ) = 𝐧 g e 2 π i ( 1 2 [ 𝐧 + 𝜶 ] 𝛀 [ 𝐧 + 𝜶 ] + [ 𝐧 + 𝜶 ] [ 𝐳 + 𝜷 ] ) .
This function is referred to as a Riemann theta function with characteristics [ 𝜶 𝜷 ] . …
21.2.7 θ [ 𝟎 𝟎 ] ( 𝐳 | 𝛀 ) = θ ( 𝐳 | 𝛀 ) .
For given 𝛀 , there are 2 2 g g -dimensional Riemann theta functions with half-period characteristics. …
2: 21.3 Symmetry and Quasi-Periodicity
§21.3(ii) Riemann Theta Functions with Characteristics
21.3.4 θ [ 𝜶 + 𝐦 1 𝜷 + 𝐦 2 ] ( 𝐳 | 𝛀 ) = e 2 π i 𝜶 𝐦 2 θ [ 𝜶 𝜷 ] ( 𝐳 | 𝛀 ) .
…For Riemann theta functions with half-period characteristics,
21.3.6 θ [ 𝜶 𝜷 ] ( 𝐳 | 𝛀 ) = ( 1 ) 4 𝜶 𝜷 θ [ 𝜶 𝜷 ] ( 𝐳 | 𝛀 ) .
3: 21.6 Products
On using theta functions with characteristics, it becomes
21.6.4 j = 1 h θ [ k = 1 h T j k 𝐜 k k = 1 h T j k 𝐝 k ] ( k = 1 h T j k 𝐳 k | 𝛀 ) = 1 𝒟 g 𝐀 𝒦 𝐁 𝒦 e 2 π i j = 1 h 𝐛 j 𝐜 j j = 1 h θ [ 𝐚 j + 𝐜 j 𝐛 j + 𝐝 j ] ( 𝐳 j | 𝛀 ) ,
21.6.7 θ [ 1 2 [ 𝐜 1 + 𝐜 2 + 𝐜 3 + 𝐜 4 ] 1 2 [ 𝐝 1 + 𝐝 2 + 𝐝 3 + 𝐝 4 ] ] ( 𝐱 + 𝐲 + 𝐮 + 𝐯 2 | 𝛀 ) θ [ 1 2 [ 𝐜 1 + 𝐜 2 𝐜 3 𝐜 4 ] 1 2 [ 𝐝 1 + 𝐝 2 𝐝 3 𝐝 4 ] ] ( 𝐱 + 𝐲 𝐮 𝐯 2 | 𝛀 ) θ [ 1 2 [ 𝐜 1 𝐜 2 + 𝐜 3 𝐜 4 ] 1 2 [ 𝐝 1 𝐝 2 + 𝐝 3 𝐝 4 ] ] ( 𝐱 𝐲 + 𝐮 𝐯 2 | 𝛀 ) θ [ 1 2 [ 𝐜 1 𝐜 2 𝐜 3 + 𝐜 4 ] 1 2 [ 𝐝 1 𝐝 2 𝐝 3 + 𝐝 4 ] ] ( 𝐱 𝐲 𝐮 + 𝐯 2 | 𝛀 ) = 1 2 g 𝜶 1 2 g / g 𝜷 1 2 g / g e 2 π i 𝜷 [ 𝐜 1 + 𝐜 2 + 𝐜 3 + 𝐜 4 ] θ [ 𝐜 1 + 𝜶 𝐝 1 + 𝜷 ] ( 𝐱 | 𝛀 ) θ [ 𝐜 2 + 𝜶 𝐝 2 + 𝜷 ] ( 𝐲 | 𝛀 ) θ [ 𝐜 3 + 𝜶 𝐝 3 + 𝜷 ] ( 𝐮 | 𝛀 ) θ [ 𝐜 4 + 𝜶 𝐝 4 + 𝜷 ] ( 𝐯 | 𝛀 ) .
§21.6(ii) Addition Formulas
21.6.8 θ [ 𝜶 𝜸 ] ( 𝐳 1 | 𝛀 ) θ [ 𝜷 𝜹 ] ( 𝐳 2 | 𝛀 ) = 𝝂 g / ( 2 g ) θ [ 1 2 [ 𝜶 + 𝜷 + 𝝂 ] 𝜸 + 𝜹 ] ( 𝐳 1 + 𝐳 2 | 2 𝛀 ) θ [ 1 2 [ 𝜶 𝜷 + 𝝂 ] 𝜸 𝜹 ] ( 𝐳 1 𝐳 2 | 2 𝛀 ) .
4: 21.8 Abelian Functions
§21.8 Abelian Functions
For every Abelian function, there is a positive integer n , such that the Abelian function can be expressed as a ratio of linear combinations of products with n factors of Riemann theta functions with characteristics that share a common period lattice. …
5: 21.1 Special Notation
Uppercase boldface letters are g × g real or complex matrices. The main functions treated in this chapter are the Riemann theta functions θ ( 𝐳 | 𝛀 ) , and the Riemann theta functions with characteristics θ [ 𝜶 𝜷 ] ( 𝐳 | 𝛀 ) . The function Θ ( ϕ | 𝐁 ) = θ ( ϕ / ( 2 π i ) | 𝐁 / ( 2 π i ) ) is also commonly used; see, for example, Belokolos et al. (1994, §2.5), Dubrovin (1981), and Fay (1973, Chapter 1).
6: 21.7 Riemann Surfaces
§21.7(ii) Fay’s Trisecant Identity
21.7.9 E ( P 1 , P 2 ) = θ [ 𝜶 𝜷 ] ( P 1 P 2 𝝎 | 𝛀 ) / ( ζ ( P 1 ) ζ ( P 2 ) ) ,
§21.7(iii) Frobenius’ Identity
7: 21.5 Modular Transformations
§21.5(ii) Riemann Theta Functions with Characteristics
21.5.9 θ [ 𝐃 𝜶 𝐂 𝜷 + 1 2 diag [ 𝐂 𝐃 T ] 𝐁 𝜶 + 𝐀 𝜷 + 1 2 diag [ 𝐀 𝐁 T ] ] ( [ [ 𝐂 𝛀 + 𝐃 ] 1 ] T 𝐳 | [ 𝐀 𝛀 + 𝐁 ] [ 𝐂 𝛀 + 𝐃 ] 1 ) = κ ( 𝜶 , 𝜷 , 𝚪 ) det [ 𝐂 𝛀 + 𝐃 ] e π i 𝐳 [ [ 𝐂 𝛀 + 𝐃 ] 1 𝐂 ] 𝐳 θ [ 𝜶 𝜷 ] ( 𝐳 | 𝛀 ) ,
8: Bibliography B
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • M. V. Berry and J. P. Keating (1998) H = x p and the Riemann Zeros. In Supersymmetry and Trace Formulae: Chaos and Disorder, I. V. Lerner, J. P. Keating, and D. E. Khmelnitskii (Eds.), pp. 355–367.
  • G. Blanch and D. S. Clemm (1969) Mathieu’s Equation for Complex Parameters. Tables of Characteristic Values. U.S. Government Printing Office, Washington, D.C..
  • G. Blanch and I. Rhodes (1955) Table of characteristic values of Mathieu’s equation for large values of the parameter. J. Washington Acad. Sci. 45 (6), pp. 166–196.
  • W. Bühring (1994) The double confluent Heun equation: Characteristic exponent and connection formulae. Methods Appl. Anal. 1 (3), pp. 348–370.
  • 9: Bibliography
  • F. Alhargan and S. Judah (1992) Frequency response characteristics of the multiport planar elliptic patch. IEEE Trans. Microwave Theory Tech. 40 (8), pp. 1726–1730.
  • G. Allasia and R. Besenghi (1989) Numerical Calculation of the Riemann Zeta Function and Generalizations by Means of the Trapezoidal Rule. In Numerical and Applied Mathematics, Part II (Paris, 1988), C. Brezinski (Ed.), IMACS Ann. Comput. Appl. Math., Vol. 1, pp. 467–472.
  • T. M. Apostol and T. H. Vu (1984) Dirichlet series related to the Riemann zeta function. J. Number Theory 19 (1), pp. 85–102.
  • T. M. Apostol (1985a) Formulas for higher derivatives of the Riemann zeta function. Math. Comp. 44 (169), pp. 223–232.
  • J. V. Armitage (1989) The Riemann Hypothesis and the Hamiltonian of a Quantum Mechanical System. In Number Theory and Dynamical Systems (York, 1987), M. M. Dodson and J. A. G. Vickers (Eds.), London Math. Soc. Lecture Note Ser., Vol. 134, pp. 153–172.
  • 10: Bibliography C
  • B. K. Choudhury (1995) The Riemann zeta-function and its derivatives. Proc. Roy. Soc. London Ser. A 450, pp. 477–499.
  • D. S. Clemm (1969) Algorithm 352: Characteristic values and associated solutions of Mathieu’s differential equation. Comm. ACM 12 (7), pp. 399–407.
  • W. J. Cody, K. E. Hillstrom, and H. C. Thacher (1971) Chebyshev approximations for the Riemann zeta function. Math. Comp. 25 (115), pp. 537–547.
  • A. Cruz, J. Esparza, and J. Sesma (1991) Zeros of the Hankel function of real order out of the principal Riemann sheet. J. Comput. Appl. Math. 37 (1-3), pp. 89–99.