Riemann
(0.001 seconds)
1—10 of 91 matching pages
1: 21.7 Riemann Surfaces
§21.7 Riemann Surfaces
►§21.7(i) Connection of Riemann Theta Functions to Riemann Surfaces
►In almost all applications, a Riemann theta function is associated with a compact Riemann surface. … ►is a Riemann matrix and it is used to define the corresponding Riemann theta function. … ►§21.7(iii) Frobenius’ Identity
…2: 25.1 Special Notation
…
►
►
►The main function treated in this chapter is the Riemann zeta function .
This notation was introduced in Riemann (1859).
►The main related functions are the Hurwitz zeta function , the dilogarithm , the polylogarithm (also known as Jonquière’s function ), Lerch’s transcendent , and the Dirichlet -functions .
nonnegative integers. | |
… |
3: 21.2 Definitions
…
►
§21.2(i) Riemann Theta Functions
… ►For numerical purposes we use the scaled Riemann theta function , defined by (Deconinck et al. (2004)), …Many applications involve quotients of Riemann theta functions: the exponential factor then disappears. … ►§21.2(ii) Riemann Theta Functions with Characteristics
… ►It is a translation of the Riemann theta function (21.2.1), multiplied by an exponential factor: …4: 21.10 Methods of Computation
…
►
•
►
•
►
•
§21.10(i) General Riemann Theta Functions
… ►§21.10(ii) Riemann Theta Functions Associated with a Riemann Surface
… ►Tretkoff and Tretkoff (1984). Here a Hurwitz system is chosen to represent the Riemann surface.
Deconinck and van Hoeij (2001). Here a plane algebraic curve representation of the Riemann surface is used.
5: 25.7 Integrals
§25.7 Integrals
►For definite integrals of the Riemann zeta function see Prudnikov et al. (1986b, §2.4), Prudnikov et al. (1992a, §3.2), and Prudnikov et al. (1992b, §3.2).6: 25.17 Physical Applications
§25.17 Physical Applications
►Analogies exist between the distribution of the zeros of on the critical line and of semiclassical quantum eigenvalues. This relates to a suggestion of Hilbert and Pólya that the zeros are eigenvalues of some operator, and the Riemann hypothesis is true if that operator is Hermitian. See Armitage (1989), Berry and Keating (1998, 1999), Keating (1993, 1999), and Sarnak (1999). …7: 21.3 Symmetry and Quasi-Periodicity
…
►
§21.3(i) Riemann Theta Functions
… ► ►§21.3(ii) Riemann Theta Functions with Characteristics
… ► …For Riemann theta functions with half-period characteristics, …8: 25.20 Approximations
…
►
•
►
•
►
•
…
►
•
Cody et al. (1971) gives rational approximations for in the form of quotients of polynomials or quotients of Chebyshev series. The ranges covered are , , , . Precision is varied, with a maximum of 20S.
Piessens and Branders (1972) gives the coefficients of the Chebyshev-series expansions of and , , for (23D).