About the Project

Regge symmetries

AdvancedHelp

(0.002 seconds)

1—10 of 54 matching pages

1: 34.5 Basic Properties: 6 j Symbol
§34.5(ii) Symmetry
Equations (34.5.9) and (34.5.10) are called Regge symmetries. Additional symmetries are obtained by applying (34.5.8) to (34.5.9) and (34.5.10). …
2: 34.3 Basic Properties: 3 j Symbol
§34.3(ii) Symmetry
Equations (34.3.11) and (34.3.12) are called Regge symmetries. Additional symmetries are obtained by applying (34.3.8)–(34.3.10) to (34.3.11)) and (34.3.12). …
3: 19.15 Advantages of Symmetry
§19.15 Advantages of Symmetry
Symmetry unifies the Landen transformations of §19.8(ii) with the Gauss transformations of §19.8(iii), as indicated following (19.22.22) and (19.36.9). … … Symmetry makes possible the reduction theorems of §19.29(i), permitting remarkable compression of tables of integrals while generalizing the interval of integration. …
4: Bille C. Carlson
The main theme of Carlson’s mathematical research has been to expose previously hidden permutation symmetries that can eliminate a set of transformations and thereby replace many formulas by a few. …This symmetry led to the development of symmetric elliptic integrals, which are free from the transformations of modulus and amplitude that complicate the Legendre theory. … In Symmetry in c, d, n of Jacobian elliptic functions (2004) he found a previously hidden symmetry in relations between Jacobian elliptic functions, which can now take a form that remains valid when the letters c, d, and n are permuted. …In Permutation symmetry for theta functions (2011) he found an analogous hidden symmetry between theta functions. …
5: Peter A. Clarkson
Clarkson has published numerous papers on integrable systems (primarily Painlevé equations), special functions, and symmetry methods for differential equations. … Kruskal, he developed the “direct method” for determining symmetry solutions of partial differential equations in New similarity reductions of the Boussinesq equation (with M. …
6: 18.6 Symmetry, Special Values, and Limits to Monomials
§18.6 Symmetry, Special Values, and Limits to Monomials
§18.6(i) Symmetry and Special Values
Table 18.6.1: Classical OP’s: symmetry and special values.
p n ( x ) p n ( x ) p n ( 1 ) p 2 n ( 0 ) p 2 n + 1 ( 0 )
7: 7.4 Symmetry
§7.4 Symmetry
g ( z ) = 2 sin ( 1 4 π + 1 2 π z 2 ) g ( z ) .
8: 14.31 Other Applications
Applications of toroidal functions include expansion of vacuum magnetic fields in stellarators and tokamaks (van Milligen and López Fraguas (1994)), analytic solutions of Poisson’s equation in channel-like geometries (Hoyles et al. (1998)), and Dirichlet problems with toroidal symmetry (Gil et al. (2000)). …
9: 21.3 Symmetry and Quasi-Periodicity
§21.3 Symmetry and Quasi-Periodicity
§21.3(i) Riemann Theta Functions
For Riemann theta functions with half-period characteristics, …
10: 4.3 Graphics
See accompanying text
Figure 4.3.1: ln x and e x . Parallel tangent lines at ( 1 , 0 ) and ( 0 , 1 ) make evident the mirror symmetry across the line y = x , demonstrating the inverse relationship between the two functions. Magnify