About the Project

Ramanujan%20partition%20identity

AdvancedHelp

(0.003 seconds)

1—10 of 244 matching pages

1: 26.10 Integer Partitions: Other Restrictions
§26.10 Integer Partitions: Other Restrictions
§26.10(i) Definitions
§26.10(iv) Identities
Equations (26.10.13) and (26.10.14) are the Rogers–Ramanujan identities. …
2: 27.20 Methods of Computation: Other Number-Theoretic Functions
The recursion formulas (27.14.6) and (27.14.7) can be used to calculate the partition function p ( n ) for n < N . …To compute a particular value p ( n ) it is better to use the Hardy–Ramanujan–Rademacher series (27.14.9). … A recursion formula obtained by differentiating (27.14.18) can be used to calculate Ramanujan’s function τ ( n ) , and the values can be checked by the congruence (27.14.20). …
3: 27.14 Unrestricted Partitions
§27.14(v) Divisibility Properties
Ramanujan (1921) gives identities that imply divisibility properties of the partition function. For example, the Ramanujan identityRamanujan also found that p ( 7 n + 5 ) 0 ( mod 7 ) and p ( 11 n + 6 ) 0 ( mod 11 ) for all n . …
4: Bibliography R
  • H. Rademacher (1938) On the partition function p(n). Proc. London Math. Soc. (2) 43 (4), pp. 241–254.
  • S. Ramanujan (1921) Congruence properties of partitions. Math. Z. 9 (1-2), pp. 147–153.
  • S. Ramanujan (1927) Some properties of Bernoulli’s numbers (J. Indian Math. Soc. 3 (1911), 219–234.). In Collected Papers,
  • S. Ramanujan (1962) Collected Papers of Srinivasa Ramanujan. Chelsea Publishing Co., New York.
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • 5: 20.11 Generalizations and Analogs
    §20.11(ii) Ramanujan’s Theta Function and q -Series
    Ramanujan’s theta function f ( a , b ) is defined by …
    §20.11(iii) Ramanujan’s Change of Base
    These results are called Ramanujan’s changes of base. …
    6: 26.2 Basic Definitions
    Partition
    As an example, { 1 , 3 , 4 } , { 2 , 6 } , { 5 } is a partition of { 1 , 2 , 3 , 4 , 5 , 6 } . … The total number of partitions of n is denoted by p ( n ) . …For the actual partitions ( π ) for n = 1 ( 1 ) 5 see Table 26.4.1. The integers whose sum is n are referred to as the parts in the partition. …
    7: Bibliography
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 1103–1106.
  • C. Adiga, B. C. Berndt, S. Bhargava, and G. N. Watson (1985) Chapter 16 of Ramanujan’s second notebook: Theta-functions and q -series. Mem. Amer. Math. Soc. 53 (315), pp. v+85.
  • G. Almkvist and B. Berndt (1988) Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, π , and the Ladies Diary. Amer. Math. Monthly 95 (7), pp. 585–608.
  • G. E. Andrews, R. A. Askey, B. C. Berndt, and R. A. Rankin (Eds.) (1988) Ramanujan Revisited. Academic Press Inc., Boston, MA.
  • G. E. Andrews (1984) Multiple series Rogers-Ramanujan type identities. Pacific J. Math. 114 (2), pp. 267–283.
  • 8: 26.9 Integer Partitions: Restricted Number and Part Size
    §26.9 Integer Partitions: Restricted Number and Part Size
    §26.9(i) Definitions
    Unrestricted partitions are covered in §27.14. …
    §26.9(ii) Generating Functions
    §26.9(iii) Recurrence Relations
    9: 20 Theta Functions
    Chapter 20 Theta Functions
    10: Bibliography L
  • P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012) Algorithm 917: complex double-precision evaluation of the Wright ω function. ACM Trans. Math. Software 38 (3), pp. Art. 20, 17.
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • D. H. Lehmer (1943) Ramanujan’s function τ ( n ) . Duke Math. J. 10 (3), pp. 483–492.
  • D. H. Lehmer (1947) The vanishing of Ramanujan’s function τ ( n ) . Duke Math. J. 14 (2), pp. 429–433.
  • J. Lepowsky and R. L. Wilson (1982) A Lie theoretic interpretation and proof of the Rogers-Ramanujan identities. Adv. in Math. 45 (1), pp. 21–72.