About the Project

Ramanujan%20cubic%20transformation

AdvancedHelp

(0.004 seconds)

1—10 of 267 matching pages

1: 1.14 Integral Transforms
§1.14 Integral Transforms
§1.14(i) Fourier Transform
§1.14(iii) Laplace Transform
Fourier Transform
Laplace Transform
2: Bibliography R
  • S. Ramanujan (1921) Congruence properties of partitions. Math. Z. 9 (1-2), pp. 147–153.
  • S. Ramanujan (1927) Some properties of Bernoulli’s numbers (J. Indian Math. Soc. 3 (1911), 219–234.). In Collected Papers,
  • S. Ramanujan (1962) Collected Papers of Srinivasa Ramanujan. Chelsea Publishing Co., New York.
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • W. H. Reid (1997a) Integral representations for products of Airy functions. II. Cubic products. Z. Angew. Math. Phys. 48 (4), pp. 646–655.
  • 3: 20.11 Generalizations and Analogs
    If both m , n are positive, then G ( m , n ) allows inversion of its arguments as a modular transformation (compare (23.15.3) and (23.15.4)): …
    §20.11(ii) Ramanujan’s Theta Function and q -Series
    Ramanujan’s theta function f ( a , b ) is defined by …
    §20.11(iii) Ramanujan’s Change of Base
    These results are called Ramanujan’s changes of base. …
    4: Bibliography W
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • G. N. Watson (1910) The cubic transformation of the hypergeometric function. Quart. J. Pure and Applied Math. 41, pp. 70–79.
  • G. N. Watson (1949) A table of Ramanujan’s function τ ( n ) . Proc. London Math. Soc. (2) 51, pp. 1–13.
  • F. J. W. Whipple (1927) Some transformations of generalized hypergeometric series. Proc. London Math. Soc. (2) 26 (2), pp. 257–272.
  • D. V. Widder (1979) The Airy transform. Amer. Math. Monthly 86 (4), pp. 271–277.
  • 5: Bibliography B
  • R. J. Baxter (1981) Rogers-Ramanujan identities in the hard hexagon model. J. Statist. Phys. 26 (3), pp. 427–452.
  • A. Berkovich and B. M. McCoy (1998) Rogers-Ramanujan Identities: A Century of Progress from Mathematics to Physics. In Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998), pp. 163–172.
  • B. C. Berndt, S. Bhargava, and F. G. Garvan (1995) Ramanujan’s theories of elliptic functions to alternative bases. Trans. Amer. Math. Soc. 347 (11), pp. 4163–4244.
  • B. C. Berndt (1989) Ramanujan’s Notebooks. Part II. Springer-Verlag, New York.
  • B. C. Berndt (1991) Ramanujan’s Notebooks. Part III. Springer-Verlag, Berlin-New York.
  • 6: 27.14 Unrestricted Partitions
    §27.14(v) Divisibility Properties
    Ramanujan (1921) gives identities that imply divisibility properties of the partition function. For example, the Ramanujan identity …
    §27.14(vi) Ramanujan’s Tau Function
    7: 20 Theta Functions
    Chapter 20 Theta Functions
    8: 17.18 Methods of Computation
    §17.18 Methods of Computation
    The two main methods for computing basic hypergeometric functions are: (1) numerical summation of the defining series given in §§17.4(i) and 17.4(ii); (2) modular transformations. …Lehner (1941) uses Method (2) in connection with the Rogers–Ramanujan identities. …
    9: Bibliography C
  • H. H. Chan (1998) On Ramanujan’s cubic transformation formula for F 1 2 ( 1 3 , 2 3 ; 1 ; z ) . Math. Proc. Cambridge Philos. Soc. 124 (2), pp. 193–204.
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • D. V. Chudnovsky and G. V. Chudnovsky (1988) Approximations and Complex Multiplication According to Ramanujan. In Ramanujan Revisited (Urbana-Champaign, Ill., 1987), G. E. Andrews, R. A. Askey, B. C. Bernd, K. G. Ramanathan, and R. A. Rankin (Eds.), pp. 375–472.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • M. D. Cooper, R. H. Jeppesen, and M. B. Johnson (1979) Coulomb effects in the Klein-Gordon equation for pions. Phys. Rev. C 20 (2), pp. 696–704.
  • 10: 27.20 Methods of Computation: Other Number-Theoretic Functions
    To compute a particular value p ( n ) it is better to use the Hardy–Ramanujan–Rademacher series (27.14.9). … A recursion formula obtained by differentiating (27.14.18) can be used to calculate Ramanujan’s function τ ( n ) , and the values can be checked by the congruence (27.14.20). …