About the Project
NIST

Ramanujan identity

AdvancedHelp

(0.002 seconds)

1—10 of 15 matching pages

1: 17.18 Methods of Computation
Lehner (1941) uses Method (2) in connection with the Rogers–Ramanujan identities. …
2: David M. Bressoud
His books are Analytic and Combinatorial Generalizations of the Rogers-Ramanujan Identities, published in Memoirs of the American Mathematical Society 24, No. …
3: 17.12 Bailey Pairs
The Bailey pair that implies the Rogers–Ramanujan identities §17.2(vi) is: …
4: 17.14 Constant Term Identities
Rogers–Ramanujan Constant Term Identities
5: 26.10 Integer Partitions: Other Restrictions
§26.10(iv) Identities
Equations (26.10.13) and (26.10.14) are the Rogers–Ramanujan identities. …
6: 27.14 Unrestricted Partitions
§27.14(v) Divisibility Properties
Ramanujan (1921) gives identities that imply divisibility properties of the partition function. For example, the Ramanujan identityRamanujan also found that p ( 7 n + 5 ) 0 ( mod 7 ) and p ( 11 n + 6 ) 0 ( mod 11 ) for all n . …
27.14.20 τ ( n ) σ 11 ( n ) ( mod 691 ) .
7: 17.2 Calculus
§17.2(vi) Rogers–Ramanujan Identities
8: Bibliography B
  • R. J. Baxter (1981) Rogers-Ramanujan identities in the hard hexagon model. J. Statist. Phys. 26 (3), pp. 427–452.
  • A. Berkovich and B. M. McCoy (1998) Rogers-Ramanujan Identities: A Century of Progress from Mathematics to Physics. In Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998), pp. 163–172.
  • 9: Bibliography L
  • J. Lepowsky and R. L. Wilson (1982) A Lie theoretic interpretation and proof of the Rogers-Ramanujan identities. Adv. in Math. 45 (1), pp. 21–72.
  • 10: Bibliography
  • G. E. Andrews (1984) Multiple series Rogers-Ramanujan type identities. Pacific J. Math. 114 (2), pp. 267–283.