About the Project

Pringsheim%20theorem%20for%20continued%20fractions

AdvancedHelp

(0.004 seconds)

1—10 of 313 matching pages

1: 1.12 Continued Fractions
§1.12 Continued Fractions
Equivalence
Pringsheim’s Theorem
Van Vleck’s Theorem
2: 20 Theta Functions
Chapter 20 Theta Functions
3: 27.15 Chinese Remainder Theorem
§27.15 Chinese Remainder Theorem
This theorem is employed to increase efficiency in calculating with large numbers by making use of smaller numbers in most of the calculation. …Their product m has 20 digits, twice the number of digits in the data. By the Chinese remainder theorem each integer in the data can be uniquely represented by its residues (mod m 1 ), (mod m 2 ), (mod m 3 ), and (mod m 4 ), respectively. …These numbers, in turn, are combined by the Chinese remainder theorem to obtain the final result ( mod m ) , which is correct to 20 digits. …
4: Peter L. Walker
Walker’s books are An Introduction to Complex Analysis, published by Hilger in 1974, The Theory of Fourier Series and Integrals, published by Wiley in 1986, Elliptic Functions. A Constructive Approach, published by Wiley in 1996, and Examples and Theorems in Analysis, published by Springer in 2004. …
  • 5: 27.2 Functions
    §27.2(i) Definitions
    Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. … (See Gauss (1863, Band II, pp. 437–477) and Legendre (1808, p. 394).) This result, first proved in Hadamard (1896) and de la Vallée Poussin (1896a, b), is known as the prime number theorem. … If ( a , n ) = 1 , then the Euler–Fermat theorem states that …
    6: 8 Incomplete Gamma and Related
    Functions
    7: 28 Mathieu Functions and Hill’s Equation
    8: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 9: 23 Weierstrass Elliptic and Modular
    Functions
    10: Tom M. Apostol
    Apostol was born on August 20, 1923. … In 1998, the Mathematical Association of America (MAA) awarded him the annual Trevor Evans Award, presented to authors of an exceptional article that is accessible to undergraduates, for his piece entitled “What Is the Most Surprising Result in Mathematics?” (Answer: the prime number theorem). …