About the Project

Poisson identity

AdvancedHelp

(0.001 seconds)

5 matching pages

1: 20.11 Generalizations and Analogs
This is the discrete analog of the Poisson identity1.8(iv)). …
2: Bibliography K
  • G. A. Kalugin, D. J. Jeffrey, and R. M. Corless (2012) Bernstein, Pick, Poisson and related integral expressions for Lambert W . Integral Transforms Spec. Funct. 23 (11), pp. 817–829.
  • S. H. Khamis (1965) Tables of the Incomplete Gamma Function Ratio: The Chi-square Integral, the Poisson Distribution. Justus von Liebig Verlag, Darmstadt (German, English).
  • A. Khare, A. Lakshminarayan, and U. Sukhatme (2003) Cyclic identities for Jacobi elliptic and related functions. J. Math. Phys. 44 (4), pp. 1822–1841.
  • A. Khare and U. Sukhatme (2002) Cyclic identities involving Jacobi elliptic functions. J. Math. Phys. 43 (7), pp. 3798–3806.
  • A. N. Kirillov (1995) Dilogarithm identities. Progr. Theoret. Phys. Suppl. (118), pp. 61–142.
  • 3: 18.18 Sums
    §18.18(vii) Poisson Kernels
    See (18.2.41) for the Poisson kernel in case of general OP’s.
    Laguerre
    Hermite
    For the Poisson kernel of Jacobi polynomials (the Bailey formula) see Bailey (1938). …
    4: Bibliography B
  • R. J. Baxter (1981) Rogers-Ramanujan identities in the hard hexagon model. J. Statist. Phys. 26 (3), pp. 427–452.
  • A. Berkovich and B. M. McCoy (1998) Rogers-Ramanujan Identities: A Century of Progress from Mathematics to Physics. In Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998), pp. 163–172.
  • B. C. Berndt (1975a) Character analogues of the Poisson and Euler-MacLaurin summation formulas with applications. J. Number Theory 7 (4), pp. 413–445.
  • M. V. Berry and F. J. Wright (1980) Phase-space projection identities for diffraction catastrophes. J. Phys. A 13 (1), pp. 149–160.
  • J. M. Borwein and P. B. Borwein (1991) A cubic counterpart of Jacobi’s identity and the AGM. Trans. Amer. Math. Soc. 323 (2), pp. 691–701.
  • 5: Errata
  • Chapter 1 Additions

    The following additions were made in Chapter 1:

  • Equation (25.15.6)
    25.15.6 G ( χ ) r = 1 k 1 χ ( r ) e 2 π i r / k .

    The upper-index of the finite sum which originally was k , was replaced with k 1 since χ ( k ) = 0 .

    Reported by Gergő Nemes on 2021-08-23

  • Section 1.13

    In Equation (1.13.4), the determinant form of the two-argument Wronskian

    1.13.4 𝒲 { w 1 ( z ) , w 2 ( z ) } = det [ w 1 ( z ) w 2 ( z ) w 1 ( z ) w 2 ( z ) ] = w 1 ( z ) w 2 ( z ) w 2 ( z ) w 1 ( z )

    was added as an equality. In ¶Wronskian (in §1.13(i)), immediately below Equation (1.13.4), a sentence was added indicating that in general the n -argument Wronskian is given by 𝒲 { w 1 ( z ) , , w n ( z ) } = det [ w k ( j 1 ) ( z ) ] , where 1 j , k n . Immediately below Equation (1.13.4), a sentence was added giving the definition of the n -argument Wronskian. It is explained just above (1.13.5) that this equation is often referred to as Abel’s identity. Immediately below Equation (1.13.5), a sentence was added explaining how it generalizes for n th-order differential equations. A reference to Ince (1926, §5.2) was added.

  • Notation

    The overloaded operator is now more clearly separated (and linked) to two distinct cases: equivalence by definition (in §§1.4(ii), 1.4(v), 2.7(i), 2.10(iv), 3.1(i), 3.1(iv), 4.18, 9.18(ii), 9.18(vi), 9.18(vi), 18.2(iv), 20.2(iii), 20.7(vi), 23.20(ii), 25.10(i), 26.15, 31.17(i)); and modular equivalence (in §§24.10(i), 24.10(ii), 24.10(iii), 24.10(iv), 24.15(iii), 24.19(ii), 26.14(i), 26.21, 27.2(i), 27.8, 27.9, 27.11, 27.12, 27.14(v), 27.14(vi), 27.15, 27.16, 27.19).

  • Subsection 5.2(iii)

    Three new identities for Pochhammer’s symbol (5.2.6)–(5.2.8) have been added at the end of this subsection.

    Suggested by Tom Koornwinder.