About the Project

Pochhammer symbol

AdvancedHelp

(0.008 seconds)

11—20 of 125 matching pages

11: 18.27 q -Hahn Class
18.27.9 v x = ( a 1 x , c 1 x ; q ) ( x , b c 1 x ; q ) , 0 < a < q 1 , 0 < b < q 1 , c < 0 ,
18.27.9_5 h n = ( c ) n a n + 1 1 a b q 2 n + 1 ( q ; q ) n q ( n + 2 2 ) ( a q , c q ; q ) n ( q , c 1 a q , a 1 c , a b q n + 1 ; q ) ( a q , c q , b q n + 1 , c 1 a b q n + 1 ; q ) ,
18.27.12 v x = ( q x / c , q x / d ; q ) ( q α + 1 x / c , q β + 1 x / d ; q ) , α , β > 1 , c , d > 0 .
18.27.14_1 h n = ( a q ) n 1 a b q 2 n + 1 ( q , b q ; q ) n ( a q ; q ) n ( a b q n + 1 ; q ) ( a q ; q ) .
12: 18.29 Asymptotic Approximations for q -Hahn and Askey–Wilson Classes
18.29.1 ( b c , b d , c d ; q ) n ( Q n ( e i θ ; a , b , c , d q ) + Q n ( e i θ ; a , b , c , d q ) ) ,
18.29.2 Q n ( z ; a , b , c , d q ) z n ( a z 1 , b z 1 , c z 1 , d z 1 ; q ) ( z 2 , b c , b d , c d ; q ) , n ; z , a , b , c , d , q fixed.
13: 17.14 Constant Term Identities
17.14.1 ( q ; q ) a 1 + a 2 + + a n ( q ; q ) a 1 ( q ; q ) a 2 ( q ; q ) a n =  coeff. of  x 1 0 x 2 0 x n 0  in  1 j < k n ( x j x k ; q ) a j ( q x k x j ; q ) a k .
17.14.2 n = 0 q n ( n + 1 ) ( q 2 ; q 2 ) n ( q ; q 2 ) n + 1 =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 q 2 ; q 2 ) ( q ; q 2 ) ( z 1 q ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 q ; q ) = H ( q ) ( q ; q 2 ) ,
17.14.3 n = 0 q n ( n + 1 ) ( q 2 ; q 2 ) n ( q ; q 2 ) n + 1 =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 ; q 2 ) ( q ; q 2 ) ( z 1 q ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 ; q ) = G ( q ) ( q ; q 2 ) ,
17.14.4 n = 0 q n 2 ( q 2 ; q 2 ) n ( q ; q 2 ) n =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 ; q 2 ) ( q ; q 2 ) ( z 1 ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 2 ; q 4 ) = G ( q 4 ) ( q ; q 2 ) ,
17.14.5 n = 0 q n 2 + 2 n ( q 2 ; q 2 ) n ( q ; q 2 ) n + 1 =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( q 2 z 1 ; q 2 ) ( q ; q 2 ) ( z 1 q 2 ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( q 4 z 2 ; q 4 ) = H ( q 4 ) ( q ; q 2 ) .
14: 5.18 q -Gamma and q -Beta Functions
5.18.1 ( a ; q ) n = k = 0 n 1 ( 1 a q k ) , n = 0 , 1 , 2 , ,
5.18.2 n ! q = 1 ( 1 + q ) ( 1 + q + + q n 1 ) = ( q ; q ) n ( 1 q ) n .
5.18.3 ( a ; q ) = k = 0 ( 1 a q k ) .
5.18.4 Γ q ( z ) = ( q ; q ) ( 1 q ) 1 z / ( q z ; q ) ,
5.18.12 B q ( a , b ) = 0 1 t a 1 ( t q ; q ) ( t q b ; q ) d q t , 0 < q < 1 , a > 0 , b > 0 .
15: 18.28 Askey–Wilson Class
18.28.1 p n ( x ) = p n ( x ; a , b , c , d | q ) = a n = 0 n q ( a b q , a c q , a d q ; q ) n ( q n , a b c d q n 1 ; q ) ( q ; q ) j = 0 1 ( 1 2 a q j x + a 2 q 2 j ) ,
18.28.4 h 0 = ( a b c d ; q ) ( q , a b , a c , a d , b c , b d , c d ; q ) ,
18.28.5 h n = h 0 ( 1 a b c d q n 1 ) ( q , a b , a c , a d , b c , b d , c d ; q ) n ( 1 a b c d q 2 n 1 ) ( a b c d ; q ) n , n = 1 , 2 , .
18.28.22 h n = ( α β ) n + 1 q ( n + 1 ) 2 α β q 2 n + 1 1 ( q ; q ) n ( α q , β δ q , γ q ; q ) n ( γ α β q n , δ α q n , 1 β q n , γ δ q ; q ) ( 1 α β q n , γ δ α q , γ β q , δ q ; q ) .
16: 17.6 ϕ 1 2 Function
17.6.5 ϕ 1 2 ( a , b a q / b ; q , q / b ) = ( q ; q ) ( a q , a q 2 / b 2 ; q 2 ) ( q / b , a q / b ; q ) , | b | > | q | .
17.6.14 n = 0 ( a ; q ) n ( b ; q 2 ) n z n ( q ; q ) n ( a z b ; q 2 ) n = ( a z , b z ; q 2 ) ( z , a z b ; q 2 ) ϕ 1 2 ( a , b b z ; q 2 , z q ) .
17: 17.4 Basic Hypergeometric Functions
17.4.1 ϕ s r + 1 ( a 0 , a 1 , a 2 , , a r b 1 , b 2 , , b s ; q , z ) = ϕ s r + 1 ( a 0 , a 1 , , a r ; b 1 , b 2 , , b s ; q , z ) = n = 0 ( a 0 ; q ) n ( a 1 ; q ) n ( a r ; q ) n ( q ; q ) n ( b 1 ; q ) n ( b s ; q ) n ( ( 1 ) n q ( n 2 ) ) s r z n .
17.4.5 Φ ( 1 ) ( a ; b , b ; c ; q ; x , y ) = m , n 0 ( a ; q ) m + n ( b ; q ) m ( b ; q ) n x m y n ( q ; q ) m ( q ; q ) n ( c ; q ) m + n ,
17.4.6 Φ ( 2 ) ( a ; b , b ; c , c ; q ; x , y ) = m , n 0 ( a ; q ) m + n ( b ; q ) m ( b ; q ) n x m y n ( q , c ; q ) m ( q , c ; q ) n ,
17.4.7 Φ ( 3 ) ( a , a ; b , b ; c ; q ; x , y ) = m , n 0 ( a , b ; q ) m ( a , b ; q ) n x m y n ( q ; q ) m ( q ; q ) n ( c ; q ) m + n ,
17.4.8 Φ ( 4 ) ( a , b ; c , c ; q ; x , y ) = m , n 0 ( a , b ; q ) m + n x m y n ( q , c ; q ) m ( q , c ; q ) n .
18: 17.7 Special Cases of Higher ϕ s r Functions
17.7.1 ϕ 2 2 ( a , q / a q , b ; q , b ) = ( a b , b q / a ; q 2 ) ( b ; q ) .
17.7.3 ϕ 2 2 ( c 2 / b 2 , b 2 c , c q ; q 2 , q ) = 1 2 ( b 2 , q ; q 2 ) ( c , c q ; q 2 ) ( ( c / b ; q ) ( b ; q ) + ( c / b ; q ) ( b ; q ) ) .
17.7.18 ϕ r + 1 r + 2 ( a , b , b 1 q m 1 , , b r q m r b q , b 1 , , b r ; q , a 1 q 1 ( m 1 + + m r ) ) = ( q , b q / a ; q ) ( b 1 / b ; q ) m 1 ( b r / b ; q ) m r ( b q , q / a ; q ) ( b 1 ; q ) m 1 ( b r ; q ) m r b m 1 + + m r ,
17.7.20 k = 0 n 1 a p k q k 1 a ( a ; p ) k ( c ; q ) k ( q ; q ) k ( a p / c ; p ) k c k = ( a p ; p ) n ( c q ; q ) n ( q ; q ) n ( a p / c ; p ) n c n .
17.7.23 ( 1 a q ) ( 1 b q ) k = 0 n ( a p k , b p k ; q ) n 1 ( 1 ( a p 2 k / b ) ) ( p ; p ) n ( p ; p ) n k ( a p k / b ; q ) n + 1 ( 1 ) k p ( k 2 ) = δ n , 0 .
19: 10.31 Power Series
10.31.3 I ν ( z ) I μ ( z ) = ( 1 2 z ) ν + μ k = 0 ( ν + μ + k + 1 ) k ( 1 4 z 2 ) k k ! Γ ( ν + k + 1 ) Γ ( μ + k + 1 ) .
20: 18.1 Notation
q -Pochhammer Symbol
18.1.2 G n ( p , q , x ) = n ! ( n + p ) n P n ( p q , q 1 ) ( 2 x 1 ) ,