About the Project

Pochhammer%20double-loop%20contour

AdvancedHelp

(0.004 seconds)

1—10 of 260 matching pages

1: 31.9 Orthogonality
31.9.2 ζ ( 1 + , 0 + , 1 , 0 ) t γ 1 ( 1 t ) δ 1 ( t a ) ϵ 1 w m ( t ) w k ( t ) d t = δ m , k θ m .
The integration path is called a Pochhammer double-loop contour (compare Figure 5.12.3). … and the integration paths 1 , 2 are Pochhammer double-loop contours encircling distinct pairs of singularities { 0 , 1 } , { 0 , a } , { 1 , a } . …
2: 13.4 Integral Representations
§13.4(ii) Contour Integrals
See accompanying text
Figure 13.4.1: Contour of integration in (13.4.11). … Magnify
The contour of integration starts and terminates at a point α on the real axis between 0 and 1 . …The contour cuts the real axis between 1 and 0 . …
3: 15.6 Integral Representations
In (15.6.3) the point 1 / ( z 1 ) lies outside the integration contour, the contour cuts the real axis between t = 1 and 0 , at which point ph t = π and ph ( 1 + t ) = 0 . In (15.6.4) the point 1 / z lies outside the integration contour, and at the point where the contour cuts the negative real axis ph t = π and ph ( 1 t ) = 0 . In (15.6.5) the integration contour starts and terminates at a point A on the real axis between 0 and 1 . …However, this reverses the direction of the integration contour, and in consequence (15.6.5) would need to be multiplied by 1 . …
See accompanying text
Figure 15.6.1: t -plane. … Magnify
4: 31.10 Integral Equations and Representations
for a suitable contour C . …The contour C must be such that … where γ > 0 , δ > 0 , and C be the Pochhammer double-loop contour about 0 and 1 (as in §31.9(i)). … for suitable contours C 1 , C 2 . …The contours C 1 , C 2 must be chosen so that …
5: 20 Theta Functions
Chapter 20 Theta Functions
6: 17.6 ϕ 1 2 Function
17.6.4 ϕ 1 2 ( b 2 , b 2 / c c ; q 2 , c q / b 2 ) = 1 2 ( b 2 , q ; q 2 ) ( c , c q / b 2 ; q 2 ) ( ( c / b ; q ) ( b ; q ) + ( c / b ; q ) ( b ; q ) ) , | c q | < | b 2 | .
17.6.4_5 ϕ 1 2 ( b 2 , b 2 / c c q 2 ; q 2 , c q 3 / b 2 ) = 1 2 b ( b 2 , q ; q 2 ) ( c q 2 , c q / b 2 ; q 2 ) ( ( c q / b ; q ) ( b ; q ) ( c q / b ; q ) ( b ; q ) ) , | c q 3 | < | b 2 | .
17.6.11 1 z 1 b ϕ 1 2 ( q , a q b q ; q , z ) = n = 0 ( a q ; q ) n ( a z q / b ; q ) 2 n b n ( z q , a q / b ; q ) n a q n = 0 ( a q ; q ) n ( a z q / b ; q ) 2 n + 1 ( b q ) n ( z q ; q ) n ( a q / b ; q ) n + 1 , | z | < 1 , | b | < 1 .
17.6.14 n = 0 ( a ; q ) n ( b ; q 2 ) n z n ( q ; q ) n ( a z b ; q 2 ) n = ( a z , b z ; q 2 ) ( z , a z b ; q 2 ) ϕ 1 2 ( a , b b z ; q 2 , z q ) .
where | z | < 1 , | ph ( z ) | < π , and the contour of integration separates the poles of ( q 1 + ζ , c q ζ ; q ) / sin ( π ζ ) from those of 1 / ( a q ζ , b q ζ ; q ) , and the infimum of the distances of the poles from the contour is positive. …
7: 18.5 Explicit Representations
T 5 ( x ) = 16 x 5 20 x 3 + 5 x ,
L 6 ( x ) = 1 720 x 6 1 20 x 5 + 5 8 x 4 10 3 x 3 + 15 2 x 2 6 x + 1 .
L 3 ( α ) ( x ) = 1 6 x 3 + 1 2 ( α + 3 ) x 2 1 2 ( α + 2 ) 2 x + 1 6 ( α + 1 ) 3 ,
L 4 ( α ) ( x ) = 1 24 x 4 1 6 ( α + 4 ) x 3 + 1 4 ( α + 3 ) 2 x 2 1 6 ( α + 2 ) 3 x + 1 24 ( α + 1 ) 4 .
8: 17.14 Constant Term Identities
17.14.1 ( q ; q ) a 1 + a 2 + + a n ( q ; q ) a 1 ( q ; q ) a 2 ( q ; q ) a n =  coeff. of  x 1 0 x 2 0 x n 0  in  1 j < k n ( x j x k ; q ) a j ( q x k x j ; q ) a k .
17.14.2 n = 0 q n ( n + 1 ) ( q 2 ; q 2 ) n ( q ; q 2 ) n + 1 =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 q 2 ; q 2 ) ( q ; q 2 ) ( z 1 q ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 q ; q ) = H ( q ) ( q ; q 2 ) ,
17.14.3 n = 0 q n ( n + 1 ) ( q 2 ; q 2 ) n ( q ; q 2 ) n + 1 =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 ; q 2 ) ( q ; q 2 ) ( z 1 q ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 ; q ) = G ( q ) ( q ; q 2 ) ,
17.14.4 n = 0 q n 2 ( q 2 ; q 2 ) n ( q ; q 2 ) n =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 ; q 2 ) ( q ; q 2 ) ( z 1 ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 2 ; q 4 ) = G ( q 4 ) ( q ; q 2 ) ,
17.14.5 n = 0 q n 2 + 2 n ( q 2 ; q 2 ) n ( q ; q 2 ) n + 1 =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( q 2 z 1 ; q 2 ) ( q ; q 2 ) ( z 1 q 2 ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( q 4 z 2 ; q 4 ) = H ( q 4 ) ( q ; q 2 ) .
9: 16.2 Definition and Analytic Properties
See §16.5 for the definition of F q p ( 𝐚 ; 𝐛 ; z ) as a contour integral when p > q + 1 and none of the a k is a nonpositive integer. …
16.2.5 𝐅 q p ( 𝐚 ; 𝐛 ; z ) = F q p ( a 1 , , a p b 1 , , b q ; z ) / ( Γ ( b 1 ) Γ ( b q ) ) = k = 0 ( a 1 ) k ( a p ) k Γ ( b 1 + k ) Γ ( b q + k ) z k k ! ;
10: 5.2 Definitions
§5.2(iii) Pochhammer’s Symbol
( a ) 0 = 1 ,
( a ) 2 n = 2 2 n ( a 2 ) n ( a + 1 2 ) n ,
( a ) 2 n + 1 = 2 2 n + 1 ( a 2 ) n + 1 ( a + 1 2 ) n .
Pochhammer symbols (rising factorials) ( x ) n = x ( x + 1 ) ( x + n 1 ) and falling factorials ( 1 ) n ( x ) n = x ( x 1 ) ( x n + 1 ) can be expressed in terms of each other via …