About the Project

Pfaff–Saalschütz balanced sum

AdvancedHelp

(0.003 seconds)

1—10 of 375 matching pages

1: 16.4 Argument Unity
When k = 1 the function is said to be balanced or Saalschützian. …
PfaffSaalschütz Balanced Sum
Contiguous balanced series have parameters shifted by an integer but still balanced. … …
2: 35.8 Generalized Hypergeometric Functions of Matrix Argument
35.8.1 F q p ( a 1 , , a p b 1 , , b q ; 𝐓 ) = k = 0 1 k ! | κ | = k [ a 1 ] κ [ a p ] κ [ b 1 ] κ [ b q ] κ Z κ ( 𝐓 ) .
PfaffSaalschütz Formula
3: 17.7 Special Cases of Higher ϕ s r Functions
Sum Related to (17.6.4)
q -PfaffSaalschütz Sum
Nonterminating Form of the q -Saalschütz Sum
Gasper–Rahman q -Analogs of the Karlsson–Minton Sums
Gosper’s Bibasic Sum
4: 17.4 Basic Hypergeometric Functions
In these references the factor ( ( 1 ) n q ( n 2 ) ) s r is not included in the sum. …
17.4.3 ψ s r ( a 1 , a 2 , , a r b 1 , b 2 , , b s ; q , z ) = ψ s r ( a 1 , a 2 , , a r ; b 1 , b 2 , , b s ; q , z ) = n = ( a 1 , a 2 , , a r ; q ) n ( 1 ) ( s r ) n q ( s r ) ( n 2 ) z n ( b 1 , b 2 , , b s ; q ) n = n = 0 ( a 1 , a 2 , , a r ; q ) n ( 1 ) ( s r ) n q ( s r ) ( n 2 ) z n ( b 1 , b 2 , , b s ; q ) n + n = 1 ( q / b 1 , q / b 2 , , q / b s ; q ) n ( q / a 1 , q / a 2 , , q / a r ; q ) n ( b 1 b 2 b s a 1 a 2 a r z ) n .
17.4.5 Φ ( 1 ) ( a ; b , b ; c ; q ; x , y ) = m , n 0 ( a ; q ) m + n ( b ; q ) m ( b ; q ) n x m y n ( q ; q ) m ( q ; q ) n ( c ; q ) m + n ,
The series (17.4.1) is said to be balanced or Saalschützian when it terminates, r = s , z = q , and … The series (17.4.1) is said to be k-balanced when r = s and …
5: Bibliography
  • G. E. Andrews (1996) Pfaff’s method II: Diverse applications. J. Comput. Appl. Math. 68 (1-2), pp. 15–23.
  • T. M. Apostol (1952) Theorems on generalized Dedekind sums. Pacific J. Math. 2 (1), pp. 1–9.
  • T. M. Apostol (2006) Bernoulli’s power-sum formulas revisited. Math. Gaz. 90 (518), pp. 276–279.
  • R. Askey and G. Gasper (1976) Positive Jacobi polynomial sums. II. Amer. J. Math. 98 (3), pp. 709–737.
  • R. Askey (1974) Jacobi polynomials. I. New proofs of Koornwinder’s Laplace type integral representation and Bateman’s bilinear sum. SIAM J. Math. Anal. 5, pp. 119–124.
  • 6: 24.1 Special Notation
    It was used in Saalschütz (1893), Nielsen (1923), Schwatt (1962), and Whittaker and Watson (1927). …
    7: Bibliography K
  • P. L. Kapitsa (1951b) The computation of the sums of negative even powers of roots of Bessel functions. Doklady Akad. Nauk SSSR (N.S.) 77, pp. 561–564.
  • Y. S. Kim, A. K. Rathie, and R. B. Paris (2013) An extension of Saalschütz’s summation theorem for the series F r + 2 r + 3 . Integral Transforms Spec. Funct. 24 (11), pp. 916–921.
  • N. M. Korobov (1958) Estimates of trigonometric sums and their applications. Uspehi Mat. Nauk 13 (4 (82)), pp. 185–192 (Russian).
  • C. Krattenthaler (1993) HYP and HYPQ. Mathematica packages for the manipulation of binomial sums and hypergeometric series respectively q -binomial sums and basic hypergeometric series. Séminaire Lotharingien de Combinatoire 30, pp. 61–76.
  • 8: Bibliography S
  • L. Saalschütz (1893) Vorlesungen über die Bernoullischen Zahlen, ihren Zusammenhang mit den Secanten-Coefficienten und ihre wichtigeren Anwendungen. Springer-Verlag, Berlin (German).
  • H. M. Srivastava (1988) Sums of certain series of the Riemann zeta function. J. Math. Anal. Appl. 134 (1), pp. 129–140.
  • 9: 17.9 Further Transformations of ϕ r r + 1 Functions
    Sears’ Balanced ϕ 3 4 Transformations
    §17.9(iv) Bibasic Series
    17.9.19 n = 0 ( a ; q 2 ) n ( b ; q ) n ( q 2 ; q 2 ) n ( c ; q ) n z n = ( b ; q ) ( a z ; q 2 ) ( c ; q ) ( z ; q 2 ) n = 0 ( c / b ; q ) 2 n ( z ; q 2 ) n b 2 n ( q ; q ) 2 n ( a z ; q 2 ) n + ( b ; q ) ( a z q ; q 2 ) ( c ; q ) ( z q ; q 2 ) n = 0 ( c / b ; q ) 2 n + 1 ( z q ; q 2 ) n b 2 n + 1 ( q ; q ) 2 n + 1 ( a z q ; q 2 ) n .
    17.9.20 n = 0 ( a ; q k ) n ( b ; q ) k n z n ( q k ; q k ) n ( c ; q ) k n = ( b ; q ) ( a z ; q k ) ( c ; q ) ( z ; q k ) n = 0 ( c / b ; q ) n ( z ; q k ) n b n ( q ; q ) n ( a z ; q k ) n , k = 1 , 2 , 3 , .
    10: 16.24 Physical Applications
    These are balanced F 3 4 functions with unit argument. …