About the Project

Painlevé transcendents

AdvancedHelp

(0.002 seconds)

11—20 of 33 matching pages

11: Peter A. Clarkson
12: Mark J. Ablowitz
ODEs with the Painlevé property contain the well-known Painlevé equations which are special second order scalar equations; their solutions are often called Painlevé transcendents. …
13: 32.2 Differential Equations
§32.2(i) Introduction
The six Painlevé equations P I P VI  are as follows: … The solutions of P I P VI  are called the Painlevé transcendents. The six equations are sometimes referred to as the Painlevé transcendents, but in this chapter this term will be used only for their solutions. …
14: 32.4 Isomonodromy Problems
Suppose …
15: Bibliography I
  • A. R. Its and A. A. Kapaev (1987) The method of isomonodromic deformations and relation formulas for the second Painlevé transcendent. Izv. Akad. Nauk SSSR Ser. Mat. 51 (4), pp. 878–892, 912 (Russian).
  • A. R. Its and A. A. Kapaev (2003) Quasi-linear Stokes phenomenon for the second Painlevé transcendent. Nonlinearity 16 (1), pp. 363–386.
  • A. R. Its and A. A. Kapaev (1998) Connection formulae for the fourth Painlevé transcendent; Clarkson-McLeod solution. J. Phys. A 31 (17), pp. 4073–4113.
  • 16: 32.3 Graphics
    §32.3 Graphics
    See accompanying text
    Figure 32.3.10: u k ( x ; 5 2 ) for 12 x 4 with k = 0.24499 2 , 0.24499 3 . … Magnify
    17: 32.7 Bäcklund Transformations
    §32.7 Bäcklund Transformations
    With the exception of P I , a Bäcklund transformation relates a Painlevé transcendent of one type either to another of the same type but with different values of the parameters, or to another type. …
    18: 32.6 Hamiltonian Structure
    §32.6 Hamiltonian Structure
    19: 32.11 Asymptotic Approximations for Real Variables
    §32.11 Asymptotic Approximations for Real Variables
    20: Bibliography K
  • E. Kanzieper (2002) Replica field theories, Painlevé transcendents, and exact correlation functions. Phys. Rev. Lett. 89 (25), pp. (250201–1)–(250201–4).
  • A. A. Kapaev and A. V. Kitaev (1993) Connection formulae for the first Painlevé transcendent in the complex domain. Lett. Math. Phys. 27 (4), pp. 243–252.
  • A. V. Kitaev (1994) Elliptic asymptotics of the first and second Painlevé transcendents. Uspekhi Mat. Nauk 49 (1(295)), pp. 77–140 (Russian).