Painlev� transcendents
Did you mean painleve� transcendents ?
(0.001 seconds)
1—10 of 40 matching pages
1: 32.2 Differential Equations
…
►
§32.2(i) Introduction
►The six Painlevé equations – are as follows: … ►The solutions of – are called the Painlevé transcendents. The six equations are sometimes referred to as the Painlevé transcendents, but in this chapter this term will be used only for their solutions. …2: 32.16 Physical Applications
§32.16 Physical Applications
►Statistical Physics
… ►Integrable Continuous Dynamical Systems
… ►Other Applications
►For the Ising model see Barouch et al. (1973), Wu et al. (1976), and McCoy et al. (1977). …3: 32 Painlevé Transcendents
Chapter 32 Painlevé Transcendents
…4: 32.13 Reductions of Partial Differential Equations
§32.13 Reductions of Partial Differential Equations
►§32.13(i) Korteweg–de Vries and Modified Korteweg–de Vries Equations
… ►§32.13(ii) Sine-Gordon Equation
… ►§32.13(iii) Boussinesq Equation
… ►5: 32.12 Asymptotic Approximations for Complex Variables
§32.12 Asymptotic Approximations for Complex Variables
… ►6: 32.17 Methods of Computation
§32.17 Methods of Computation
…7: 32.14 Combinatorics
§32.14 Combinatorics
… ►where the distribution function is defined here by … ►The distribution function given by (32.14.2) arises in random matrix theory where it gives the limiting distribution for the normalized largest eigenvalue in the Gaussian Unitary Ensemble of Hermitian matrices; see Tracy and Widom (1994). …8: 32.15 Orthogonal Polynomials
§32.15 Orthogonal Polynomials
… ►9: 32.5 Integral Equations
§32.5 Integral Equations
…10: Alexander A. Its
…
► Matveev), published by Springer in 1994, and Painlevé Transcendents: The Riemann-Hilbert Approach (with A.
…