Painlev� equations
Did you mean painleve� equations ?
(0.002 seconds)
1—10 of 744 matching pages
1: 30.2 Differential Equations
§30.2 Differential Equations
►§30.2(i) Spheroidal Differential Equation
… ► … ►The Liouville normal form of equation (30.2.1) is … ►§30.2(iii) Special Cases
…2: 31.2 Differential Equations
§31.2 Differential Equations
►§31.2(i) Heun’s Equation
►
31.2.1
.
…
►
§31.2(v) Heun’s Equation Automorphisms
… ►Composite Transformations
…3: 29.2 Differential Equations
§29.2 Differential Equations
►§29.2(i) Lamé’s Equation
… ►§29.2(ii) Other Forms
… ►Equation (29.2.10) is a special case of Heun’s equation (31.2.1).4: 15.10 Hypergeometric Differential Equation
§15.10 Hypergeometric Differential Equation
►§15.10(i) Fundamental Solutions
►
15.10.1
►This is the hypergeometric differential equation.
…
►
…
5: 32.2 Differential Equations
§32.2 Differential Equations
►§32.2(i) Introduction
►The six Painlevé equations – are as follows: … ►§32.2(ii) Renormalizations
… ► …6: 28.2 Definitions and Basic Properties
…
►
§28.2(i) Mathieu’s Equation
… ►
28.2.1
…
►This is the characteristic equation of Mathieu’s equation (28.2.1).
…
►
§28.2(iv) Floquet Solutions
… ► …7: 28.20 Definitions and Basic Properties
…
►
§28.20(i) Modified Mathieu’s Equation
►When is replaced by , (28.2.1) becomes the modified Mathieu’s equation: ►
28.20.1
…
►
28.20.8
►Then from §2.7(ii) it is seen that equation (28.20.2) has independent and unique solutions that are asymptotic to as in the respective sectors , being an arbitrary small positive constant.
…
8: 28.18 Integrals and Integral Equations
§28.18 Integrals and Integral Equations
…9: 31.13 Asymptotic Approximations
§31.13 Asymptotic Approximations
… ►For asymptotic approximations of the solutions of Heun’s equation (31.2.1) when two singularities are close together, see Lay and Slavyanov (1999). ►For asymptotic approximations of the solutions of confluent forms of Heun’s equation in the neighborhood of irregular singularities, see Komarov et al. (1976), Ronveaux (1995, Parts B,C,D,E), Bogush and Otchik (1997), Slavyanov and Veshev (1997), and Lay et al. (1998).10: 29.19 Physical Applications
…
►