About the Project

Neville%20theta%20functions

AdvancedHelp

(0.003 seconds)

11—20 of 966 matching pages

11: 9.12 Scorer Functions
§9.12 Scorer Functions
where …
§9.12(ii) Graphs
Functions and Derivatives
12: 11.9 Lommel Functions
§11.9 Lommel Functions
Reflection Formulas
§11.9(ii) Expansions in Series of Bessel Functions
13: 16.13 Appell Functions
§16.13 Appell Functions
The following four functions of two real or complex variables x and y cannot be expressed as a product of two F 1 2 functions, in general, but they satisfy partial differential equations that resemble the hypergeometric differential equation (15.10.1):
16.13.1 F 1 ( α ; β , β ; γ ; x , y ) = m , n = 0 ( α ) m + n ( β ) m ( β ) n ( γ ) m + n m ! n ! x m y n , max ( | x | , | y | ) < 1 ,
16.13.4 F 4 ( α , β ; γ , γ ; x , y ) = m , n = 0 ( α ) m + n ( β ) m + n ( γ ) m ( γ ) n m ! n ! x m y n , | x | + | y | < 1 .
14: 15.2 Definitions and Analytical Properties
§15.2(i) Gauss Series
The hypergeometric function F ( a , b ; c ; z ) is defined by the Gauss series … … On the circle of convergence, | z | = 1 , the Gauss series: …
§15.2(ii) Analytic Properties
15: 10.1 Special Notation
(For other notation see Notation for the Special Functions.) … For the spherical Bessel functions and modified spherical Bessel functions the order n is a nonnegative integer. For the other functions when the order ν is replaced by n , it can be any integer. For the Kelvin functions the order ν is always assumed to be real. … For older notations see British Association for the Advancement of Science (1937, pp. xix–xx) and Watson (1944, Chapters 1–3).
16: 4.2 Definitions
§4.2(iii) The Exponential Function
§4.2(iv) Powers
Powers with General Bases
17: 8.17 Incomplete Beta Functions
§8.17 Incomplete Beta Functions
§8.17(ii) Hypergeometric Representations
§8.17(iii) Integral Representation
§8.17(iv) Recurrence Relations
§8.17(vi) Sums
18: 25.11 Hurwitz Zeta Function
§25.11 Hurwitz Zeta Function
§25.11(i) Definition
The Riemann zeta function is a special case: …
§25.11(ii) Graphics
§25.11(vi) Derivatives
19: 11.10 Anger–Weber Functions
§11.10 Anger–Weber Functions
§11.10(v) Interrelations
§11.10(vi) Relations to Other Functions
§11.10(viii) Expansions in Series of Products of Bessel Functions
20: 1.10 Functions of a Complex Variable
§1.10(vi) Multivalued Functions
If D = ( , 0 ] and z = r e i θ , then one branch is r e i θ / 2 , the other branch is r e i θ / 2 , with π < θ < π in both cases. Similarly if D = [ 0 , ) , then one branch is r e i θ / 2 , the other branch is r e i θ / 2 , with 0 < θ < 2 π in both cases. …
§1.10(vii) Inverse Functions
§1.10(xi) Generating Functions