About the Project

Neumann polynomial

AdvancedHelp

(0.001 seconds)

4 matching pages

1: 10.23 Sums
10.23.11 a k = 1 2 π i | t | = c f ( t ) O k ( t ) d t , 0 < c < c ,
and O k ( t ) is Neumann’s polynomial, defined by the generating function:
10.23.12 1 t z = J 0 ( z ) O 0 ( t ) + 2 k = 1 J k ( z ) O k ( t ) , | z | < | t | .
O n ( t ) is a polynomial of degree n + 1 in 1 / t : O 0 ( t ) = 1 / t and
10.23.13 O n ( t ) = 1 4 k = 0 n / 2 ( n k 1 ) ! n k ! ( 2 t ) n 2 k + 1 , n = 1 , 2 , .
2: Errata
  • Equation (10.23.11)
    10.23.11 a k = 1 2 π i | t | = c f ( t ) O k ( t ) d t , 0 < c < c

    Originally the contour of integration written incorrectly as | z | = c , has been corrected to be | t | = c .

    Reported by Mark Dunster on 2021-03-22

  • 3: 14.12 Integral Representations
    14.12.5 P ν μ ( x ) = ( x 2 1 ) μ / 2 Γ ( μ ) 1 x P ν ( t ) ( x t ) μ 1 d t , μ > 0 .
    Neumann’s Integral
    14.12.13 𝑸 n ( x ) = 1 2 ( n ! ) 1 1 P n ( t ) x t d t .
    4: Bibliography S
  • I. M. Sheffer (1939) Some properties of polynomial sets of type zero. Duke Math. J. 5, pp. 590–622.
  • I. Sh. Slavutskiĭ (1995) Staudt and arithmetical properties of Bernoulli numbers. Historia Sci. (2) 5 (1), pp. 69–74.
  • A. Sri Ranga (2010) Szegő polynomials from hypergeometric functions. Proc. Amer. Math. Soc. 138 (12), pp. 4259–4270.
  • W. F. Sun (1996) Uniform asymptotic expansions of Hermite polynomials. M. Phil. thesis, City University of Hong Kong.
  • O. Szász (1950) On the relative extrema of ultraspherical polynomials. Boll. Un. Mat. Ital. (3) 5, pp. 125–127.