About the Project

Miller algorithm

AdvancedHelp

(0.001 seconds)

11—15 of 15 matching pages

11: Bibliography N
  • NAG (commercial C and Fortran libraries) Numerical Algorithms Group, Ltd..
  • M. Nardin, W. F. Perger, and A. Bhalla (1992a) Algorithm 707: CONHYP: A numerical evaluator of the confluent hypergeometric function for complex arguments of large magnitudes. ACM Trans. Math. Software 18 (3), pp. 345–349.
  • National Bureau of Standards (1958) Integrals of Airy Functions. National Bureau of Standards Applied Mathematics Series, U.S. Government Printing Office, Washington, D.C..
  • A. Nijenhuis and H. S. Wilf (1975) Combinatorial Algorithms. Academic Press, New York.
  • 12: Bibliography B
  • D. H. Bailey (1993) Algorithm 719: Multiprecision translation and execution of Fortran programs. ACM Trans. Math. Software 19 (3), pp. 288–319.
  • R. Barakat (1961) Evaluation of the incomplete gamma function of imaginary argument by Chebyshev polynomials. Math. Comp. 15 (73), pp. 7–11.
  • A. R. Barnett (1981a) An algorithm for regular and irregular Coulomb and Bessel functions of real order to machine accuracy. Comput. Phys. Comm. 21 (3), pp. 297–314.
  • W. G. Bickley, L. J. Comrie, J. C. P. Miller, D. H. Sadler, and A. J. Thompson (1952) Bessel Functions. Part II: Functions of Positive Integer Order. British Association for the Advancement of Science, Mathematical Tables, Volume 10, Cambridge University Press, Cambridge.
  • A. R. Booker, A. Strömbergsson, and H. Then (2013) Bounds and algorithms for the K -Bessel function of imaginary order. LMS J. Comput. Math. 16, pp. 78–108.
  • 13: Bibliography D
  • M. Deléglise and J. Rivat (1996) Computing π ( x ) : The Meissel, Lehmer, Lagarias, Miller, Odlyzko method. Math. Comp. 65 (213), pp. 235–245.
  • A. R. DiDonato and A. H. Morris (1987) Algorithm 654: Fortran subroutines for computing the incomplete gamma function ratios and their inverses. ACM Trans. Math. Software 13 (3), pp. 318–319.
  • A. R. DiDonato and A. H. Morris (1992) Algorithm 708: Significant digit computation of the incomplete beta function ratios. ACM Trans. Math. Software 18 (3), pp. 360–373.
  • D. Ding (2000) A simplified algorithm for the second-order sound fields. J. Acoust. Soc. Amer. 108 (6), pp. 2759–2764.
  • E. Dorrer (1968) Algorithm 322. F-distribution. Comm. ACM 11 (2), pp. 116–117.
  • 14: Bibliography M
  • P. N. Meisinger, T. R. Miller, and M. C. Ogilvie (2002) Phenomenological equations of state for the quark-gluon plasma. Phys. Rev. D 65 (3), pp. (034009–1)–(034009–10).
  • A. R. Miller (1997) A class of generalized hypergeometric summations. J. Comput. Appl. Math. 87 (1), pp. 79–85.
  • G. F. Miller (1960) Tables of Generalized Exponential Integrals. NPL Mathematical Tables, Vol. III, Her Majesty’s Stationery Office, London.
  • G. F. Miller (1966) On the convergence of the Chebyshev series for functions possessing a singularity in the range of representation. SIAM J. Numer. Anal. 3 (3), pp. 390–409.
  • J. C. P. Miller (1950) On the choice of standard solutions for a homogeneous linear differential equation of the second order. Quart. J. Mech. Appl. Math. 3 (2), pp. 225–235.
  • 15: Bibliography H
  • E. W. Hansen (1985) Fast Hankel transform algorithm. IEEE Trans. Acoust. Speech Signal Process. 32 (3), pp. 666–671.
  • C. B. Haselgrove and J. C. P. Miller (1960) Tables of the Riemann Zeta Function. Royal Society Mathematical Tables, Vol. 6, Cambridge University Press, New York.
  • J. R. Herndon (1961a) Algorithm 55: Complete elliptic integral of the first kind. Comm. ACM 4 (4), pp. 180.
  • G. W. Hill and A. W. Davis (1973) Algorithm 442: Normal deviate. Comm. ACM 16 (1), pp. 51–52.
  • I. D. Hill (1973) Algorithm AS66: The normal integral. Appl. Statist. 22 (3), pp. 424–427.