About the Project

Mellin transforms

AdvancedHelp

(0.002 seconds)

11—20 of 36 matching pages

11: 15.6 Integral Representations
15.6.1 𝐅 ( a , b ; c ; z ) = 1 Γ ( b ) Γ ( c b ) 0 1 t b 1 ( 1 t ) c b 1 ( 1 z t ) a d t , | ph ( 1 z ) | < π ; c > b > 0 .
15.6.2 𝐅 ( a , b ; c ; z ) = Γ ( 1 + b c ) 2 π i Γ ( b ) 0 ( 1 + ) t b 1 ( t 1 ) c b 1 ( 1 z t ) a d t , | ph ( 1 z ) | < π ; c b 1 , 2 , 3 , , b > 0 .
15.6.2_5 𝐅 ( a , b ; c ; z ) = 1 Γ ( b ) Γ ( c b ) 0 t b 1 ( t + 1 ) a c ( t z t + 1 ) a d t , | ph ( 1 z ) | < π ; c > b > 0 .
15.6.3 𝐅 ( a , b ; c ; z ) = e b π i Γ ( 1 b ) 2 π i Γ ( c b ) ( 0 + ) t b 1 ( t + 1 ) a c ( t z t + 1 ) a d t , | ph ( 1 z ) | < π ; b 1 , 2 , 3 , , ( c b ) > 0 .
15.6.8 𝐅 ( a , b ; c ; z ) = 1 Γ ( c d ) 0 1 𝐅 ( a , b ; d ; z t ) t d 1 ( 1 t ) c d 1 d t , | ph ( 1 z ) | < π ; c > d > 0 .
12: 14.17 Integrals
§14.17(vi) Mellin Transforms
For Mellin transforms involving associated Legendre functions see Oberhettinger (1974, pp. 69–82) and Marichev (1983, pp. 247–283), and for inverse transforms see Oberhettinger (1974, pp. 205–215).
13: 16.5 Integral Representations and Integrals
16.5.2 F q + 1 p + 1 ( a 0 , , a p b 0 , , b q ; z ) = Γ ( b 0 ) Γ ( a 0 ) Γ ( b 0 a 0 ) 0 1 t a 0 1 ( 1 t ) b 0 a 0 1 F q p ( a 1 , , a p b 1 , , b q ; z t ) d t , b 0 > a 0 > 0 ,
14: 9.10 Integrals
§9.10(vi) Mellin Transform
9.10.17 0 t α 1 Ai ( t ) d t = Γ ( α ) 3 ( α + 2 ) / 3 Γ ( 1 3 α + 2 3 ) , α > 0 .
15: 8.19 Generalized Exponential Integral
8.19.2 E p ( z ) = z p 1 z e t t p d t .
8.19.4 E p ( z ) = z p 1 e z Γ ( p ) 0 t p 1 e z t 1 + t d t , | ph z | < 1 2 π , p > 0 .
16: 7.7 Integral Representations
7.7.13 f ( z ) = ( 2 π ) 3 / 2 2 π i c i c + i ζ s Γ ( s ) Γ ( s + 1 2 ) Γ ( s + 3 4 ) Γ ( 1 4 s ) d s ,
7.7.14 g ( z ) = ( 2 π ) 3 / 2 2 π i c i c + i ζ s Γ ( s ) Γ ( s + 1 2 ) Γ ( s + 1 4 ) Γ ( 3 4 s ) d s .
17: 8.6 Integral Representations
8.6.10 γ ( a , z ) = 1 2 π i c i c + i Γ ( s ) a s z a s d s , | ph z | < 1 2 π , a 0 , 1 , 2 , ,
8.6.12 Γ ( a , z ) = z a 1 e z Γ ( 1 a ) 1 2 π i c i c + i Γ ( s + 1 a ) π z s sin ( π s ) d s , | ph z | < 3 2 π , a 1 , 2 , 3 , .
18: 11.7 Integrals and Sums
11.7.10 0 t ν 1 𝐇 ν ( t ) d t = π 2 ν + 1 Γ ( ν + 1 ) , ν > 3 2 ,
11.7.11 0 t μ ν 1 𝐇 ν ( t ) d t = Γ ( 1 2 μ ) 2 μ ν 1 tan ( 1 2 π μ ) Γ ( ν 1 2 μ + 1 ) , | μ | < 1 , ν > μ 3 2 ,
11.7.12 0 t μ ν 𝐇 μ ( t ) 𝐇 ν ( t ) d t = π Γ ( μ + ν ) 2 μ + ν Γ ( μ + ν + 1 2 ) Γ ( μ + 1 2 ) Γ ( ν + 1 2 ) , ( μ + ν ) > 0 .
19: 10.43 Integrals
10.43.19 0 t μ 1 K ν ( t ) d t = 2 μ 2 Γ ( 1 2 μ 1 2 ν ) Γ ( 1 2 μ + 1 2 ν ) , | ν | < μ .
10.43.22 0 t μ 1 e a t K ν ( t ) d t = { ( 1 2 π ) 1 2 Γ ( μ ν ) Γ ( μ + ν ) ( 1 a 2 ) 1 2 μ + 1 4 𝖯 ν 1 2 μ + 1 2 ( a ) , 1 < a < 1 , ( 1 2 π ) 1 2 Γ ( μ ν ) Γ ( μ + ν ) ( a 2 1 ) 1 2 μ + 1 4 P ν 1 2 μ + 1 2 ( a ) , a 0 , a 1 .
10.43.23 0 t ν + 1 I ν ( b t ) exp ( p 2 t 2 ) d t = b ν ( 2 p 2 ) ν + 1 exp ( b 2 4 p 2 ) , ν > 1 , ( p 2 ) > 0 ,
10.43.26 0 K μ ( a t ) J ν ( b t ) t λ d t = b ν Γ ( 1 2 ν 1 2 λ + 1 2 μ + 1 2 ) Γ ( 1 2 ν 1 2 λ 1 2 μ + 1 2 ) 2 λ + 1 a ν λ + 1 𝐅 ( ν λ + μ + 1 2 , ν λ μ + 1 2 ; ν + 1 ; b 2 a 2 ) , ( ν + 1 λ ) > | μ | , a > | b | .
10.43.27 0 t μ + ν + 1 K μ ( a t ) J ν ( b t ) d t = ( 2 a ) μ ( 2 b ) ν Γ ( μ + ν + 1 ) ( a 2 + b 2 ) μ + ν + 1 , ( ν + 1 ) > | μ | , a > | b | .
20: 13.16 Integral Representations
13.16.10 1 Γ ( 1 + 2 μ ) M κ , μ ( e ± π i z ) = e 1 2 z ± ( 1 2 + μ ) π i 2 π i Γ ( 1 2 + μ κ ) i i Γ ( t κ ) Γ ( 1 2 + μ t ) Γ ( 1 2 + μ + t ) z t d t , | ph z | < 1 2 π ,
13.16.11 W κ , μ ( z ) = e 1 2 z 2 π i i i Γ ( 1 2 + μ + t ) Γ ( 1 2 μ + t ) Γ ( κ t ) Γ ( 1 2 + μ κ ) Γ ( 1 2 μ κ ) z t d t , | ph z | < 3 2 π ,
13.16.12 W κ , μ ( z ) = e 1 2 z 2 π i i i Γ ( 1 2 + μ + t ) Γ ( 1 2 μ + t ) Γ ( 1 κ + t ) z t d t , | ph z | < 1 2 π ,