About the Project

Mellin%E2%80%93Barnes%20type

AdvancedHelp

(0.003 seconds)

1—10 of 209 matching pages

1: 2.5 Mellin Transform Methods
§2.5 Mellin Transform Methods
The Mellin transform of f ( t ) is defined by …The inversion formula is given by … To apply the Mellin transform method outlined in §2.5(i), we require the transforms f ( 1 z ) and h ( z ) to have a common strip of analyticity. …
2: 5.19 Mathematical Applications
§5.19(ii) MellinBarnes Integrals
Many special functions f ( z ) can be represented as a MellinBarnes integral, that is, an integral of a product of gamma functions, reciprocals of gamma functions, and a power of z , the integration contour being doubly-infinite and eventually parallel to the imaginary axis at both ends. …
3: 1.14 Integral Transforms
§1.14(iv) Mellin Transform
The Mellin transform of a real- or complex-valued function f ( x ) is defined by …
Inversion
Parseval-type Formulas
Convolution
4: Richard B. Paris
 Wood), published by Longman Scientific and Technical in 1986, and Asymptotics and Mellin-Barnes Integrals (with D. …
5: 8.6 Integral Representations
MellinBarnes Integrals
8.6.10 γ ( a , z ) = 1 2 π i c i c + i Γ ( s ) a s z a s d s , | ph z | < 1 2 π , a 0 , 1 , 2 , ,
8.6.12 Γ ( a , z ) = z a 1 e z Γ ( 1 a ) 1 2 π i c i c + i Γ ( s + 1 a ) π z s sin ( π s ) d s , | ph z | < 3 2 π , a 1 , 2 , 3 , .
6: Bibliography P
  • R. B. Paris and D. Kaminski (2001) Asymptotics and Mellin-Barnes Integrals. Cambridge University Press, Cambridge.
  • R. B. Paris (1992b) Smoothing of the Stokes phenomenon using Mellin-Barnes integrals. J. Comput. Appl. Math. 41 (1-2), pp. 117–133.
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • S. Porubský (1998) Voronoi type congruences for Bernoulli numbers. In Voronoi’s Impact on Modern Science. Book I, P. Engel and H. Syta (Eds.),
  • T. Prellberg and A. L. Owczarek (1995) Stacking models of vesicles and compact clusters. J. Statist. Phys. 80 (3–4), pp. 755–779.
  • 7: 10.32 Integral Representations
    MellinBarnes Type
    10.32.13 K ν ( z ) = ( 1 2 z ) ν 4 π i c i c + i Γ ( t ) Γ ( t ν ) ( 1 2 z ) 2 t d t , c > max ( ν , 0 ) , | ph z | < 1 2 π .
    10.32.14 K ν ( z ) = 1 2 π 2 i ( π 2 z ) 1 2 e z cos ( ν π ) i i Γ ( t ) Γ ( 1 2 t ν ) Γ ( 1 2 t + ν ) ( 2 z ) t d t , ν 1 2 , | ph z | < 3 2 π .
    MellinBarnes Type
    10.32.19 K μ ( z ) K ν ( z ) = 1 8 π i c i c + i Γ ( t + 1 2 μ + 1 2 ν ) Γ ( t + 1 2 μ 1 2 ν ) Γ ( t 1 2 μ + 1 2 ν ) Γ ( t 1 2 μ 1 2 ν ) Γ ( 2 t ) ( 1 2 z ) 2 t d t , c > 1 2 ( | μ | + | ν | ) , | ph z | < 1 2 π .
    8: 20.10 Integrals
    §20.10(i) Mellin Transforms with respect to the Lattice Parameter
    20.10.1 0 x s 1 θ 2 ( 0 | i x 2 ) d x = 2 s ( 1 2 s ) π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 1 ,
    20.10.2 0 x s 1 ( θ 3 ( 0 | i x 2 ) 1 ) d x = π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 1 ,
    20.10.3 0 x s 1 ( 1 θ 4 ( 0 | i x 2 ) ) d x = ( 1 2 1 s ) π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 0 .
    9: 15.14 Integrals
    §15.14 Integrals
    The Mellin transform of the hypergeometric function of negative argument is given by
    15.14.1 0 x s 1 𝐅 ( a , b c ; x ) d x = Γ ( s ) Γ ( a s ) Γ ( b s ) Γ ( a ) Γ ( b ) Γ ( c s ) , min ( a , b ) > s > 0 .
    Mellin transforms of hypergeometric functions are given in Erdélyi et al. (1954a, §6.9), Oberhettinger (1974, §1.15), and Marichev (1983, pp. 288–299). Inverse Mellin transforms are given in Erdélyi et al. (1954a, §7.5). …
    10: 15.6 Integral Representations
    §15.6 Integral Representations
    15.6.1 𝐅 ( a , b ; c ; z ) = 1 Γ ( b ) Γ ( c b ) 0 1 t b 1 ( 1 t ) c b 1 ( 1 z t ) a d t , | ph ( 1 z ) | < π ; c > b > 0 .
    15.6.2 𝐅 ( a , b ; c ; z ) = Γ ( 1 + b c ) 2 π i Γ ( b ) 0 ( 1 + ) t b 1 ( t 1 ) c b 1 ( 1 z t ) a d t , | ph ( 1 z ) | < π ; c b 1 , 2 , 3 , , b > 0 .
    15.6.2_5 𝐅 ( a , b ; c ; z ) = 1 Γ ( b ) Γ ( c b ) 0 t b 1 ( t + 1 ) a c ( t z t + 1 ) a d t , | ph ( 1 z ) | < π ; c > b > 0 .
    See accompanying text
    Figure 15.6.1: t -plane. … Magnify