# Mellin transform methods

(0.003 seconds)

## 9 matching pages

##### 1: 2.5 Mellin Transform Methods
###### §2.5(ii) Extensions
To apply the Mellin transform method outlined in §2.5(i), we require the transforms $\mathscr{M}\mskip-3.0muf\mskip 3.0mu\left(1-z\right)$ and $\mathscr{M}\mskip-3.0muh\mskip 3.0mu\left(z\right)$ to have a common strip of analyticity. … The Mellin transform method can also be extended to derive asymptotic expansions of multidimensional integrals having algebraic or logarithmic singularities, or both; see Wong (1989, Chapter 3), Paris and Kaminski (2001, Chapter 7), and McClure and Wong (1987). See also Brüning (1984) for a different approach. …
##### 2: 2.3 Integrals of a Real Variable
where $\mathscr{M}\mskip-3.0muf\mskip 3.0mu\left(\alpha\right)$ is the Mellin transform of $f(t)$2.5(i)). …
###### §2.3(iii) Laplace’s Method
The integral (2.3.24) transforms into …
###### §2.3(vi) Asymptotics of MellinTransforms
For the asymptotics of the Mellin transform $\mathscr{M}\mskip-3.0muf\mskip 3.0mu\left(z\right)=\int^{\infty}_{0}t^{z-1}f(t% )\,\mathrm{d}t$ as $z\to\infty$ see Frenzen (1987b), Sidi (1985, 2011).
Stroud and Secrest (1966) includes computational methods and extensive tables. … Oscillatory integral transforms are treated in Wong (1982) by a method based on Gaussian quadrature. … Further methods are given in Clendenin (1966) and Lyness (1985). … Other contour integrals occur in standard integral transforms or their inverses, for example, Hankel transforms10.22(v)), Kontorovich–Lebedev transforms10.43(v)), and Mellin transforms1.14(iv)). …
##### 4: Bibliography O
• F. Oberhettinger (1990) Tables of Fourier Transforms and Fourier Transforms of Distributions. Springer-Verlag, Berlin.
• F. Oberhettinger (1974) Tables of Mellin Transforms. Springer-Verlag, Berlin-New York.
• A. M. Odlyzko (1995) Asymptotic Enumeration Methods. In Handbook of Combinatorics, Vol. 2, L. Lovász, R. L. Graham, and M. Grötschel (Eds.), pp. 1063–1229.
• T. Oliveira e Silva (2006) Computing $\pi(x)$: The combinatorial method. Revista do DETUA 4 (6), pp. 759–768.
• J. Oliver (1977) An error analysis of the modified Clenshaw method for evaluating Chebyshev and Fourier series. J. Inst. Math. Appl. 20 (3), pp. 379–391.
• ##### 5: 2.6 Distributional Methods
###### §2.6(ii) Stieltjes Transform
$\mathscr{M}\mskip-3.0muf\mskip 3.0mu\left(z\right)$ being the Mellin transform of $f(t)$ or its analytic continuation (§2.5(ii)). … For a more detailed discussion of the derivation of asymptotic expansions of Stieltjes transforms by the distribution method, see McClure and Wong (1978) and Wong (1989, Chapter 6). … where $\mathscr{M}\mskip-3.0muf\mskip 3.0mu\left(z\right)$ is the Mellin transform of $f$ or its analytic continuation. …
##### 6: Bibliography S
• J. Segura (1998) A global Newton method for the zeros of cylinder functions. Numer. Algorithms 18 (3-4), pp. 259–276.
• I. Shavitt and M. Karplus (1965) Gaussian-transform method for molecular integrals. I. Formulation for energy integrals. J. Chem. Phys. 43 (2), pp. 398–414.
• A. Sidi (1985) Asymptotic expansions of Mellin transforms and analogues of Watson’s lemma. SIAM J. Math. Anal. 16 (4), pp. 896–906.
• A. Sidi (2003) Practical Extrapolation Methods: Theory and Applications. Cambridge Monographs on Applied and Computational Mathematics, Vol. 10, Cambridge University Press, Cambridge.
• A. Sidi (2011) Asymptotic expansion of Mellin transforms in the complex plane. Int. J. Pure Appl. Math. 71 (3), pp. 465–480.
• ##### 7: Bibliography W
• G. N. Watson (1910) The cubic transformation of the hypergeometric function. Quart. J. Pure and Applied Math. 41, pp. 70–79.
• J. A. Wheeler (1937) Wave functions for large arguments by the amplitude-phase method. Phys. Rev. 52, pp. 1123–1127.
• R. Wong and M. Wyman (1974) The method of Darboux. J. Approximation Theory 10 (2), pp. 159–171.
• R. Wong and Y. Zhao (2005) On a uniform treatment of Darboux’s method. Constr. Approx. 21 (2), pp. 225–255.
• R. Wong (1979) Explicit error terms for asymptotic expansions of Mellin convolutions. J. Math. Anal. Appl. 72 (2), pp. 740–756.
• ##### 8: Bibliography F
• J. Faraut (1982) Un théorème de Paley-Wiener pour la transformation de Fourier sur un espace riemannien symétrique de rang un. J. Funct. Anal. 49 (2), pp. 230–268.
• H. E. Fettis (1965) Calculation of elliptic integrals of the third kind by means of Gauss’ transformation. Math. Comp. 19 (89), pp. 97–104.
• D. Frenkel and R. Portugal (2001) Algebraic methods to compute Mathieu functions. J. Phys. A 34 (17), pp. 3541–3551.
• C. L. Frenzen (1987b) On the asymptotic expansion of Mellin transforms. SIAM J. Math. Anal. 18 (1), pp. 273–282.
• B. R. Frieden (1971) Evaluation, design and extrapolation methods for optical signals, based on use of the prolate functions. In Progress in Optics, E. Wolf (Ed.), Vol. 9, pp. 311–407.
• ##### 9: Bibliography P
• R. B. Paris and D. Kaminski (2001) Asymptotics and Mellin-Barnes Integrals. Cambridge University Press, Cambridge.
• R. B. Paris (1992b) Smoothing of the Stokes phenomenon using Mellin-Barnes integrals. J. Comput. Appl. Math. 41 (1-2), pp. 117–133.
• R. B. Paris (2004) Exactification of the method of steepest descents: The Bessel functions of large order and argument. Proc. Roy. Soc. London Ser. A 460, pp. 2737–2759.
• R. Piessens and M. Branders (1983) Modified Clenshaw-Curtis method for the computation of Bessel function integrals. BIT 23 (3), pp. 370–381.
• M. Puoskari (1988) A method for computing Bessel function integrals. J. Comput. Phys. 75 (2), pp. 334–344.