Meixner polynomials
(0.001 seconds)
1—10 of 25 matching pages
1: 18.21 Hahn Class: Interrelations
2: 18.24 Hahn Class: Asymptotic Approximations
…
►For two asymptotic expansions of as , with and fixed, see Jin and Wong (1998) and Wang and Wong (2011).
…
►For asymptotic approximations for the zeros of in terms of zeros of (§9.9(i)), see Jin and Wong (1999) and Khwaja and Olde Daalhuis (2012).
…
►For an asymptotic expansion of as , with fixed, see Li and Wong (2001).
…Corresponding approximations are included for the zeros of .
…
►For asymptotic approximations to as , with fixed, see Temme and López (2001).
…
3: 18.22 Hahn Class: Recurrence Relations and Differences
…
►
Table 18.22.2: Difference equations (18.22.12) for Krawtchouk, Meixner, and Charlier polynomials.
►
►
►
…
►
18.22.7
…
►
… | |||
… |
18.22.16
…
►
18.22.29
►
18.22.30
4: 18.19 Hahn Class: Definitions
…
►Tables 18.19.1 and 18.19.2 provide definitions via orthogonality and standardization (§§18.2(i), 18.2(iii)) for the Hahn polynomials
, Krawtchouk polynomials
, Meixner polynomials
, and Charlier polynomials
.
►
Table 18.19.1: Orthogonality properties for Hahn, Krawtchouk, Meixner, and Charlier OP’s: discrete sets, weight functions, standardizations, and parameter constraints.
►
►
►
►
…
►
►
… | ||||
Meixner | , , | |||
… |
18.19.6
…
5: 18.20 Hahn Class: Explicit Representations
…
►For the Krawtchouk, Meixner, and Charlier polynomials, and are as in Table 18.20.1.
►
…
►
18.20.4
…
►
18.20.7
…
►
18.20.10
6: 18.23 Hahn Class: Generating Functions
7: 18.30 Associated OP’s
…
►
►
►
§18.30(v) Associated Meixner–Pollaczek Polynomials
►In view of (18.22.8) the associated Meixner–Pollaczek polynomials are defined by the recurrence relation ►
.
…
8: 18.35 Pollaczek Polynomials
…
►
►
►
18.35.10
►For the ultraspherical polynomials
, the Meixner–Pollaczek polynomials
and the associated Meixner–Pollaczek polynomials
see §§18.3, 18.19 and 18.30(v), respectively.
…