About the Project

Mathieu functions

AdvancedHelp

(0.005 seconds)

11—20 of 62 matching pages

11: Simon Ruijsenaars
12: 28.23 Expansions in Series of Bessel Functions
§28.23 Expansions in Series of Bessel Functions
28.23.2 me ν ( 0 , h 2 ) M ν ( j ) ( z , h ) = n = ( 1 ) n c 2 n ν ( h 2 ) 𝒞 ν + 2 n ( j ) ( 2 h cosh z ) ,
28.23.6 Mc 2 m ( j ) ( z , h ) = ( 1 ) m ( ce 2 m ( 0 , h 2 ) ) 1 = 0 ( 1 ) A 2 2 m ( h 2 ) 𝒞 2 ( j ) ( 2 h cosh z ) ,
28.23.8 Mc 2 m + 1 ( j ) ( z , h ) = ( 1 ) m ( ce 2 m + 1 ( 0 , h 2 ) ) 1 = 0 ( 1 ) A 2 + 1 2 m + 1 ( h 2 ) 𝒞 2 + 1 ( j ) ( 2 h cosh z ) ,
13: 28.28 Integrals, Integral Representations, and Integral Equations
§28.28(i) Equations with Elementary Kernels
§28.28(ii) Integrals of Products with Bessel Functions
§28.28(iii) Integrals of Products of Mathieu Functions of Noninteger Order
§28.28(iv) Integrals of Products of Mathieu Functions of Integer Order
§28.28(v) Compendia
14: 28.35 Tables
§28.35 Tables
  • Kirkpatrick (1960) contains tables of the modified functions Ce n ( x , q ) , Se n + 1 ( x , q ) for n = 0 ( 1 ) 5 , q = 1 ( 1 ) 20 , x = 0.1 ( .1 ) 1 ; 4D or 5D.

  • Zhang and Jin (1996, pp. 521–532) includes the eigenvalues a n ( q ) , b n + 1 ( q ) for n = 0 ( 1 ) 4 , q = 0 ( 1 ) 50 ; n = 0 ( 1 ) 20 ( a ’s) or 19 ( b ’s), q = 1 , 3 , 5 , 10 , 15 , 25 , 50 ( 50 ) 200 . Fourier coefficients for ce n ( x , 10 ) , se n + 1 ( x , 10 ) , n = 0 ( 1 ) 7 . Mathieu functions ce n ( x , 10 ) , se n + 1 ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , x = 0 ( 5 ) 90 . Modified Mathieu functions Mc n ( j ) ( x , 10 ) , Ms n + 1 ( j ) ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , j = 1 , 2 , x = 0 ( .2 ) 4 . Precision is mostly 9S.

  • Blanch and Clemm (1969) includes eigenvalues a n ( q ) , b n ( q ) for q = ρ e i ϕ , ρ = 0 ( .5 ) 25 , ϕ = 5 ( 5 ) 90 , n = 0 ( 1 ) 15 ; 4D. Also a n ( q ) and b n ( q ) for q = i ρ , ρ = 0 ( .5 ) 100 , n = 0 ( 2 ) 14 and n = 2 ( 2 ) 16 , respectively; 8D. Double points for n = 0 ( 1 ) 15 ; 8D. Graphs are included.

  • §28.35(iii) Zeros
    15: 28.19 Expansions in Series of me ν + 2 n Functions
    §28.19 Expansions in Series of me ν + 2 n Functions
    28.19.2 f ( z ) = n = f n me ν + 2 n ( z , q ) ,
    28.19.3 f n = 1 π 0 π f ( z ) me ν + 2 n ( z , q ) d z .
    28.19.4 e i ν z = n = c 2 n ν + 2 n ( q ) me ν + 2 n ( z , q ) ,
    16: 28.3 Graphics
    §28.3 Graphics
    §28.3(i) Line Graphs: Mathieu Functions with Fixed q and Variable x
    §28.3(ii) Surfaces: Mathieu Functions with Variable x and q
    See accompanying text
    Figure 28.3.13: ce 2 ( x , q ) for 0 x 2 π , 0 q 10 . Magnify 3D Help
    17: 28.1 Special Notation
    The main functions treated in this chapter are the Mathieu functions
    ce ν ( z , q ) , se ν ( z , q ) , fe n ( z , q ) , ge n ( z , q ) , me ν ( z , q ) ,
    and the modified Mathieu functions
    Ce ν ( z , q ) , Se ν ( z , q ) , Fe n ( z , q ) , Ge n ( z , q ) ,
    f o , n ( h ) .
    18: 28.14 Fourier Series
    §28.14 Fourier Series
    28.14.1 me ν ( z , q ) = m = c 2 m ν ( q ) e i ( ν + 2 m ) z ,
    28.14.2 ce ν ( z , q ) = m = c 2 m ν ( q ) cos ( ν + 2 m ) z ,
    28.14.3 se ν ( z , q ) = m = c 2 m ν ( q ) sin ( ν + 2 m ) z ,
    28.14.5 m = ( c 2 m ν ( q ) ) 2 = 1 ;
    19: 28.34 Methods of Computation
  • (f)

    Asymptotic approximations by zeros of orthogonal polynomials of increasing degree. See Volkmer (2008). This method also applies to eigenvalues of the Whittaker–Hill equation (§28.31(i)) and eigenvalues of Lamé functions29.3(i)).

  • §28.34(iv) Modified Mathieu Functions
  • (c)

    Use of asymptotic expansions for large z or large q . See §§28.25 and 28.26.

  • 20: 28.36 Software
    §28.36(iii) Mathieu and Modified Mathieu Functions