About the Project

Mathieu equation

AdvancedHelp

(0.004 seconds)

11—20 of 54 matching pages

11: 28.34 Methods of Computation
§28.34(i) Characteristic Exponents
§28.34(ii) Eigenvalues
  • (f)

    Asymptotic approximations by zeros of orthogonal polynomials of increasing degree. See Volkmer (2008). This method also applies to eigenvalues of the Whittaker–Hill equation28.31(i)) and eigenvalues of Lamé functions (§29.3(i)).

  • §28.34(iii) Floquet Solutions
    12: 28.15 Expansions for Small q
    §28.15(i) Eigenvalues λ ν ( q )
    28.15.1 λ ν ( q ) = ν 2 + 1 2 ( ν 2 1 ) q 2 + 5 ν 2 + 7 32 ( ν 2 1 ) 3 ( ν 2 4 ) q 4 + 9 ν 4 + 58 ν 2 + 29 64 ( ν 2 1 ) 5 ( ν 2 4 ) ( ν 2 9 ) q 6 + .
    Higher coefficients can be found by equating powers of q in the following continued-fraction equation, with a = λ ν ( q ) :
    28.15.2 a ν 2 q 2 a ( ν + 2 ) 2 q 2 a ( ν + 4 ) 2 = q 2 a ( ν 2 ) 2 q 2 a ( ν 4 ) 2 .
    13: 28.33 Physical Applications
  • McLachlan (1947, Chapters XVI–XIX) for applications of the wave equation to vibrational systems, electrical and thermal diffusion, electromagnetic wave guides, elliptical cylinders in viscous fluids, and diffraction of sound and electromagnetic waves.

  • 28.33.4 w ′′ ( t ) + ( b f cos ( 2 ω t ) ) w ( t ) = 0 ,
    Hence from §28.17 the corresponding Mathieu equation is stable or unstable according as ( q , a ) is in the intersection of with the colored or the uncolored open regions depicted in Figure 28.17.1. …
    14: 28.30 Expansions in Series of Eigenfunctions
    28.30.1 w m ′′ + ( λ ^ m + Q ( x ) ) w m = 0 ,
    28.30.3 f ( x ) = m = 0 f m w m ( x ) ,
    28.30.4 f m = 1 2 π 0 2 π f ( x ) w m ( x ) d x .
    15: 28.4 Fourier Series
    28.4.24 A 2 m 2 n ( q ) A 0 2 n ( q ) = ( 1 ) m ( m ! ) 2 ( q 4 ) m π ( 1 + O ( m 1 ) ) w II ( 1 2 π ; a 2 n ( q ) , q ) ,
    28.4.25 A 2 m + 1 2 n + 1 ( q ) A 1 2 n + 1 ( q ) = ( 1 ) m + 1 ( ( 1 2 ) m + 1 ) 2 ( q 4 ) m + 1 2 ( 1 + O ( m 1 ) ) w II ( 1 2 π ; a 2 n + 1 ( q ) , q ) ,
    28.4.26 B 2 m + 1 2 n + 1 ( q ) B 1 2 n + 1 ( q ) = ( 1 ) m ( ( 1 2 ) m + 1 ) 2 ( q 4 ) m + 1 2 ( 1 + O ( m 1 ) ) w I ( 1 2 π ; b 2 n + 1 ( q ) , q ) ,
    28.4.27 B 2 m 2 n + 2 ( q ) B 2 2 n + 2 ( q ) = ( 1 ) m ( m ! ) 2 ( q 4 ) m q π ( 1 + O ( m 1 ) ) w I ( 1 2 π ; b 2 n + 2 ( q ) , q ) .
    16: 28.8 Asymptotic Expansions for Large q
    §28.8 Asymptotic Expansions for Large q
    28.8.1 a m ( h 2 ) b m + 1 ( h 2 ) } 2 h 2 + 2 s h 1 8 ( s 2 + 1 ) 1 2 7 h ( s 3 + 3 s ) 1 2 12 h 2 ( 5 s 4 + 34 s 2 + 9 ) 1 2 17 h 3 ( 33 s 5 + 410 s 3 + 405 s ) 1 2 20 h 4 ( 63 s 6 + 1260 s 4 + 2943 s 2 + 486 ) 1 2 25 h 5 ( 527 s 7 + 15617 s 5 + 69001 s 3 + 41607 s ) + .
    28.8.2 b m + 1 ( h 2 ) a m ( h 2 ) = 2 4 m + 5 m ! ( 2 π ) 1 / 2 h m + ( 3 / 2 ) e 4 h ( 1 6 m 2 + 14 m + 7 32 h + O ( 1 h 2 ) ) .
    Barrett (1981) supplies asymptotic approximations for numerically satisfactory pairs of solutions of both Mathieu’s equation (28.2.1) and the modified Mathieu equation (28.20.1). … Dunster (1994a) supplies uniform asymptotic approximations for numerically satisfactory pairs of solutions of Mathieu’s equation (28.2.1). …
    17: 28.1 Special Notation
    m , n integers.
    a , q , h real or complex parameters of Mathieu’s equation with q = h 2 .
    ce ν ( z , q ) , se ν ( z , q ) , fe n ( z , q ) , ge n ( z , q ) , me ν ( z , q ) ,
    The eigenvalues of Mathieu’s equation are denoted by …
    λ ν ( q ) .
    Table 28.1.1: Notations for parameters in Mathieu’s equation.
    Reference a q
    18: 28.10 Integral Equations
    §28.10(i) Equations with Elementary Kernels
    §28.10(ii) Equations with Bessel-Function Kernels
    28.10.9 0 π / 2 J 0 ( 2 q ( cos 2 τ sin 2 ζ ) ) ce 2 n ( τ , q ) d τ = w II ( 1 2 π ; a 2 n ( q ) , q ) ce 2 n ( ζ , q ) ,
    §28.10(iii) Further Equations
    19: Bibliography V
  • G. Vedeler (1950) A Mathieu equation for ships rolling among waves. I, II. Norske Vid. Selsk. Forh., Trondheim 22 (25–26), pp. 113–123.
  • H. Volkmer (1998) On the growth of convergence radii for the eigenvalues of the Mathieu equation. Math. Nachr. 192, pp. 239–253.
  • H. Volkmer (2004a) Error estimates for Rayleigh-Ritz approximations of eigenvalues and eigenfunctions of the Mathieu and spheroidal wave equation. Constr. Approx. 20 (1), pp. 39–54.
  • 20: 30.2 Differential Equations
    If μ 2 = 1 4 , Equation (30.2.2) reduces to the Mathieu equation; see (28.2.1). …