About the Project

Liouville?Green approximation theorem

AdvancedHelp

(0.011 seconds)

1—10 of 274 matching pages

1: 28.27 Addition Theorems
§28.27 Addition Theorems
Addition theorems provide important connections between Mathieu functions with different parameters and in different coordinate systems. They are analogous to the addition theorems for Bessel functions (§10.23(ii)) and modified Bessel functions (§10.44(ii)). …
2: 16.26 Approximations
§16.26 Approximations
For discussions of the approximation of generalized hypergeometric functions and the Meijer G -function in terms of polynomials, rational functions, and Chebyshev polynomials see Luke (1975, §§5.12 - 5.13) and Luke (1977b, Chapters 1 and 9).
3: 31.13 Asymptotic Approximations
§31.13 Asymptotic Approximations
For asymptotic approximations for the accessory parameter eigenvalues q m , see Fedoryuk (1991) and Slavyanov (1996). For asymptotic approximations of the solutions of Heun’s equation (31.2.1) when two singularities are close together, see Lay and Slavyanov (1999). For asymptotic approximations of the solutions of confluent forms of Heun’s equation in the neighborhood of irregular singularities, see Komarov et al. (1976), Ronveaux (1995, Parts B,C,D,E), Bogush and Otchik (1997), Slavyanov and Veshev (1997), and Lay et al. (1998).
4: 10.76 Approximations
§10.76 Approximations
§10.76(ii) Bessel Functions, Hankel Functions, and Modified Bessel Functions
Bickley Functions
Spherical Bessel Functions
Kelvin Functions
5: 2.1 Definitions and Elementary Properties
This result also holds with both O ’s replaced by o ’s. … Some asymptotic approximations are expressed in terms of two or more Poincaré asymptotic expansions. …For an example see (2.8.15). …
§2.1(iv) Uniform Asymptotic Expansions
§2.1(v) Generalized Asymptotic Expansions
6: 4.47 Approximations
§4.47 Approximations
§4.47(iii) Padé Approximations
Luke (1975, Chapter 3) supplies real and complex approximations for ln , exp , sin , cos , tan , arctan , arcsinh . …
7: Bibliography R
  • E. M. Rains (1998) Normal limit theorems for symmetric random matrices. Probab. Theory Related Fields 112 (3), pp. 411–423.
  • A. Ralston (1965) Rational Chebyshev approximation by Remes’ algorithms. Numer. Math. 7 (4), pp. 322–330.
  • M. Razaz and J. L. Schonfelder (1981) Remark on Algorithm 498: Airy functions using Chebyshev series approximations. ACM Trans. Math. Software 7 (3), pp. 404–405.
  • P. Ribenboim (1979) 13 Lectures on Fermat’s Last Theorem. Springer-Verlag, New York.
  • G. B. Rybicki (1989) Dawson’s integral and the sampling theorem. Computers in Physics 3 (2), pp. 85–87.
  • 8: 7.24 Approximations
    §7.24 Approximations
    §7.24(i) Approximations in Terms of Elementary Functions
  • Cody (1969) provides minimax rational approximations for erf x and erfc x . The maximum relative precision is about 20S.

  • Cody (1968) gives minimax rational approximations for the Fresnel integrals (maximum relative precision 19S); for a Fortran algorithm and comments see Snyder (1993).

  • Cody et al. (1970) gives minimax rational approximations to Dawson’s integral F ( x ) (maximum relative precision 20S–22S).

  • 9: 25.20 Approximations
    §25.20 Approximations
  • Cody et al. (1971) gives rational approximations for ζ ( s ) in the form of quotients of polynomials or quotients of Chebyshev series. The ranges covered are 0.5 s 5 , 5 s 11 , 11 s 25 , 25 s 55 . Precision is varied, with a maximum of 20S.

  • Piessens and Branders (1972) gives the coefficients of the Chebyshev-series expansions of s ζ ( s + 1 ) and ζ ( s + k ) , k = 2 , 3 , 4 , 5 , 8 , for 0 s 1 (23D).

  • Morris (1979) gives rational approximations for Li 2 ( x ) 25.12(i)) for 0.5 x 1 . Precision is varied with a maximum of 24S.

  • Antia (1993) gives minimax rational approximations for Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for the intervals < x 2 and 2 x < , with s = 1 2 , 1 2 , 3 2 , 5 2 . For each s there are three sets of approximations, with relative maximum errors 10 4 , 10 8 , 10 12 .

  • 10: 5.23 Approximations
    §5.23 Approximations
    §5.23(i) Rational Approximations
    §5.23(ii) Expansions in Chebyshev Series
    §5.23(iii) Approximations in the Complex Plane
    See Schmelzer and Trefethen (2007) for a survey of rational approximations to various scaled versions of Γ ( z ) . …