About the Project

Liouville%E2%80%93Green%20approximation%20theorem

AdvancedHelp

(0.003 seconds)

1—10 of 341 matching pages

1: 1.13 Differential Equations
Liouville Transformation
§1.13(viii) Eigenvalues and Eigenfunctions: Sturm-Liouville and Liouville forms
This is the Sturm-Liouville form of a second order differential equation, where denotes d d x . … A regular Sturm-Liouville system will only have solutions for certain (real) values of λ , these are eigenvalues. …
Transformation to Liouville normal Form
2: 27.2 Functions
§27.2(i) Definitions
Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. … (See Gauss (1863, Band II, pp. 437–477) and Legendre (1808, p. 394).) … If ( a , n ) = 1 , then the Euler–Fermat theorem states that … This is Liouville’s function. …
3: Bibliography D
  • K. Dilcher (1987b) Irreducibility of certain generalized Bernoulli polynomials belonging to quadratic residue class characters. J. Number Theory 25 (1), pp. 72–80.
  • B. A. Dubrovin (1981) Theta functions and non-linear equations. Uspekhi Mat. Nauk 36 (2(218)), pp. 11–80 (Russian).
  • T. M. Dunster, D. A. Lutz, and R. Schäfke (1993) Convergent Liouville-Green expansions for second-order linear differential equations, with an application to Bessel functions. Proc. Roy. Soc. London Ser. A 440, pp. 37–54.
  • T. M. Dunster (1997) Error analysis in a uniform asymptotic expansion for the generalised exponential integral. J. Comput. Appl. Math. 80 (1), pp. 127–161.
  • T. M. Dunster (2001b) Uniform asymptotic expansions for Charlier polynomials. J. Approx. Theory 112 (1), pp. 93–133.
  • 4: Bibliography
  • D. E. Amos, S. L. Daniel, and M. K. Weston (1977) Algorithm 511: CDC 6600 subroutines IBESS and JBESS for Bessel functions I ν ( x ) and J ν ( x ) , x 0 , ν 0 . ACM Trans. Math. Software 3 (1), pp. 93–95.
  • D. E. Amos (1990) Algorithm 683: A portable FORTRAN subroutine for exponential integrals of a complex argument. ACM Trans. Math. Software 16 (2), pp. 178–182.
  • W. O. Amrein, A. M. Hinz, and D. B. Pearson (Eds.) (2005) Sturm-Liouville Theory. Birkhäuser Verlag, Basel.
  • M. J. Atia, A. Martínez-Finkelshtein, P. Martínez-González, and F. Thabet (2014) Quadratic differentials and asymptotics of Laguerre polynomials with varying complex parameters. J. Math. Anal. Appl. 416 (1), pp. 52–80.
  • M. Aymar, C. H. Greene, and E. Luc-Koenig (1996) Multichannel Rydberg spectroscopy of complex atoms. Reviews of Modern Physics 68, pp. 1015–1123.
  • 5: Bibliography S
  • B. Simon (2005c) Sturm oscillation and comparison theorems. In Sturm-Liouville theory, pp. 29–43.
  • D. R. Smith (1986) Liouville-Green approximations via the Riccati transformation. J. Math. Anal. Appl. 116 (1), pp. 147–165.
  • R. Spigler, M. Vianello, and F. Locatelli (1999) Liouville-Green-Olver approximations for complex difference equations. J. Approx. Theory 96 (2), pp. 301–322.
  • R. Spigler and M. Vianello (1992) Liouville-Green approximations for a class of linear oscillatory difference equations of the second order. J. Comput. Appl. Math. 41 (1-2), pp. 105–116.
  • R. Spigler and M. Vianello (1997) A Survey on the Liouville-Green (WKB) Approximation for Linear Difference Equations of the Second Order. In Advances in Difference Equations (Veszprém, 1995), S. Elaydi, I. Győri, and G. Ladas (Eds.), pp. 567–577.
  • 6: 2.7 Differential Equations
    §2.7(iii) LiouvilleGreen (WKBJ) Approximation
    For irregular singularities of nonclassifiable rank, a powerful tool for finding the asymptotic behavior of solutions, complete with error bounds, is as follows:
    LiouvilleGreen Approximation Theorem
    By approximatingThe first of these references includes extensions to complex variables and reversions for zeros. …
    7: 27.4 Euler Products and Dirichlet Series
    The fundamental theorem of arithmetic is linked to analysis through the concept of the Euler product. …
    27.4.7 n = 1 λ ( n ) n s = ζ ( 2 s ) ζ ( s ) , s > 1 ,
    8: Bibliography O
  • J. Oliver (1977) An error analysis of the modified Clenshaw method for evaluating Chebyshev and Fourier series. J. Inst. Math. Appl. 20 (3), pp. 379–391.
  • F. W. J. Olver (1974) Error bounds for stationary phase approximations. SIAM J. Math. Anal. 5 (1), pp. 19–29.
  • F. W. J. Olver (1978) General connection formulae for Liouville-Green approximations in the complex plane. Philos. Trans. Roy. Soc. London Ser. A 289, pp. 501–548.
  • F. W. J. Olver (1980a) Asymptotic approximations and error bounds. SIAM Rev. 22 (2), pp. 188–203.
  • C. Osácar, J. Palacián, and M. Palacios (1995) Numerical evaluation of the dilogarithm of complex argument. Celestial Mech. Dynam. Astronom. 62 (1), pp. 93–98.
  • 9: 2.9 Difference Equations
    §2.9(iii) Other Approximations
    For asymptotic approximations to solutions of second-order difference equations analogous to the LiouvilleGreen (WKBJ) approximation for differential equations (§2.7(iii)) see Spigler and Vianello (1992, 1997) and Spigler et al. (1999). …
    10: Bibliography T
  • J. D. Talman (1983) LSFBTR: A subroutine for calculating spherical Bessel transforms. Comput. Phys. Comm. 30 (1), pp. 93–99.
  • J. G. Taylor (1978) Error bounds for the Liouville-Green approximation to initial-value problems. Z. Angew. Math. Mech. 58 (12), pp. 529–537.
  • J. G. Taylor (1982) Improved error bounds for the Liouville-Green (or WKB) approximation. J. Math. Anal. Appl. 85 (1), pp. 79–89.
  • N. M. Temme and A. B. Olde Daalhuis (1990) Uniform asymptotic approximation of Fermi-Dirac integrals. J. Comput. Appl. Math. 31 (3), pp. 383–387.
  • P.-H. Tseng and T.-C. Lee (1998) Numerical evaluation of exponential integral: Theis well function approximation. Journal of Hydrology 205 (1-2), pp. 38–51.