About the Project

Legendre polynomials

AdvancedHelp

(0.005 seconds)

11—20 of 71 matching pages

11: 34.3 Basic Properties: 3 j Symbol
§34.3(vii) Relations to Legendre Polynomials and Spherical Harmonics
For the polynomials P l see §18.3, and for the function Y l , m see §14.30.
34.3.19 P l 1 ( cos θ ) P l 2 ( cos θ ) = l ( 2 l + 1 ) ( l 1 l 2 l 0 0 0 ) 2 P l ( cos θ ) ,
34.3.21 0 π P l 1 ( cos θ ) P l 2 ( cos θ ) P l 3 ( cos θ ) sin θ d θ = 2 ( l 1 l 2 l 3 0 0 0 ) 2 ,
12: 18.13 Continued Fractions
Legendre
P n ( x ) is the denominator of the n th approximant to: …
13: 18.17 Integrals
Legendre
Legendre
Legendre
Legendre
Legendre
14: 18.7 Interrelations and Limit Relations
Legendre, Ultraspherical, and Jacobi
18.7.9 P n ( x ) = C n ( 1 2 ) ( x ) = P n ( 0 , 0 ) ( x ) .
18.7.10 P n ( x ) = P n ( 2 x 1 ) .
15: 18.5 Explicit Representations
Table 18.5.1: Classical OP’s: Rodrigues formulas (18.5.5).
p n ( x ) w ( x ) F ( x ) κ n
P n ( x ) 1 1 x 2 ( 2 ) n n !
P 0 ( x ) = 1 ,
P 1 ( x ) = x ,
P 2 ( x ) = 3 2 x 2 1 2 ,
P 3 ( x ) = 5 2 x 3 3 2 x ,
16: 18.1 Notation
Classical OP’s
  • Legendre: P n ( x ) .

  • Shifted Legendre: P n ( x ) .

  • 17: 18.30 Associated OP’s
    §18.30(ii) Associated Legendre Polynomials
    18.30.6 P n ( x ; c ) = P n ( 0 , 0 ) ( x ; c ) , n = 0 , 1 , .
    18.30.7 P n ( x ; c ) = = 0 n c + c P ( x ) P n ( x ) ,
    in which P n ( x ) are the Legendre polynomials of Table 18.3.1. For further results on associated Legendre polynomials see Chihara (1978, Chapter VI, §12). …
    18: 14.12 Integral Representations
    14.12.5 P ν μ ( x ) = ( x 2 1 ) μ / 2 Γ ( μ ) 1 x P ν ( t ) ( x t ) μ 1 d t , μ > 0 .
    14.12.13 𝑸 n ( x ) = 1 2 ( n ! ) 1 1 P n ( t ) x t d t .
    19: 18.9 Recurrence Relations and Derivatives
    Table 18.9.1: Classical OP’s: recurrence relations (18.9.1).
    p n ( x ) A n B n C n
    P n ( x ) 2 n + 1 n + 1 0 n n + 1
    P n ( x ) 4 n + 2 n + 1 2 n + 1 n + 1 n n + 1
    Table 18.9.2: Classical OP’s: recurrence relations (18.9.2_1).
    p n ( x ) a n b n c n
    P n ( x ) n + 1 2 n + 1 0 n 2 n + 1
    20: 18.12 Generating Functions
    Legendre
    18.12.11 1 1 2 x z + z 2 = n = 0 P n ( x ) z n , | z | < 1 .
    18.12.12 e x z J 0 ( z 1 x 2 ) = n = 0 P n ( x ) n ! z n .