About the Project
NIST

Legendre elliptic integrals

AdvancedHelp

(0.020 seconds)

1—10 of 73 matching pages

1: 19.2 Definitions
§19.2(ii) Legendre’s Integrals
19.2.4 F ( ϕ , k ) = 0 ϕ d θ 1 - k 2 sin 2 θ = 0 sin ϕ d t 1 - t 2 1 - k 2 t 2 ,
19.2.5 E ( ϕ , k ) = 0 ϕ 1 - k 2 sin 2 θ d θ = 0 sin ϕ 1 - k 2 t 2 1 - t 2 d t .
19.2.6 D ( ϕ , k ) = 0 ϕ sin 2 θ d θ 1 - k 2 sin 2 θ = 0 sin ϕ t 2 d t 1 - t 2 1 - k 2 t 2 = ( F ( ϕ , k ) - E ( ϕ , k ) ) / k 2 .
The cases with ϕ = π / 2 are the complete integrals: …
2: 19.35 Other Applications
Generalizations of elliptic integrals appear in analysis of modular theorems of Ramanujan (Anderson et al. (2000)); analysis of Selberg integrals (Van Diejen and Spiridonov (2001)); use of Legendre’s relation (19.7.1) to compute π to high precision (Borwein and Borwein (1987, p. 26)).
§19.35(ii) Physical
3: 29.14 Orthogonality
29.14.2 g , h = 0 K 0 K w ( s , t ) g ( s , t ) h ( s , t ) d t d s ,
29.14.3 w ( s , t ) = sn 2 ( K + i t , k ) - sn 2 ( s , k ) .
29.14.4 sE 2 n + 1 m ( s , k 2 ) sE 2 n + 1 m ( K + i t , k 2 ) ,
29.14.5 cE 2 n + 1 m ( s , k 2 ) cE 2 n + 1 m ( K + i t , k 2 ) ,
29.14.11 g , h = 0 4 K 0 2 K w ( s , t ) g ( s , t ) h ( s , t ) d t d s ,
4: 19.13 Integrals of Elliptic Integrals
§19.13(i) Integration with Respect to the Modulus
§19.13(ii) Integration with Respect to the Amplitude
§19.13(iii) Laplace Transforms
5: 22.11 Fourier and Hyperbolic Series
22.11.1 sn ( z , k ) = 2 π K k n = 0 q n + 1 2 sin ( ( 2 n + 1 ) ζ ) 1 - q 2 n + 1 ,
22.11.2 cn ( z , k ) = 2 π K k n = 0 q n + 1 2 cos ( ( 2 n + 1 ) ζ ) 1 + q 2 n + 1 ,
22.11.3 dn ( z , k ) = π 2 K + 2 π K n = 1 q n cos ( 2 n ζ ) 1 + q 2 n .
6: 19.3 Graphics
§19.3 Graphics
See Figures 19.3.119.3.6 for complete and incomplete Legendre’s elliptic integrals. … In Figures 19.3.7 and 19.3.8 for complete Legendre’s elliptic integrals with complex arguments, height corresponds to the absolute value of the function and color to the phase. …
See accompanying text
Figure 19.3.12: ( E ( k ) ) as a function of complex k 2 for - 2 ( k 2 ) 2 , - 2 ( k 2 ) 2 . … Magnify 3D Help
7: 19.7 Connection Formulas
§19.7 Connection Formulas
Reciprocal-Modulus Transformation
Imaginary-Modulus Transformation
Imaginary-Argument Transformation
§19.7(iii) Change of Parameter of Π ( ϕ , α 2 , k )
8: 19.9 Inequalities
§19.9(i) Complete Integrals
19.9.9 L ( a , b ) = 4 a E ( k ) , k 2 = 1 - ( b 2 / a 2 ) , a > b .
§19.9(ii) Incomplete Integrals
9: 19.6 Special Cases
§19.6 Special Cases
19.6.10 lim ϕ 0 E ( ϕ , k ) / ϕ = 1 .
10: 22.12 Expansions in Other Trigonometric Series and Doubly-Infinite Partial Fractions: Eisenstein Series
22.12.2 2 K k sn ( 2 K t , k ) = n = - π sin ( π ( t - ( n + 1 2 ) τ ) ) = n = - ( m = - ( - 1 ) m t - m - ( n + 1 2 ) τ ) ,
22.12.8 2 K dc ( 2 K t , k ) = n = - π sin ( π ( t + 1 2 - n τ ) ) = n = - ( m = - ( - 1 ) m t + 1 2 - m - n τ ) ,
22.12.11 2 K ns ( 2 K t , k ) = n = - π sin ( π ( t - n τ ) ) = n = - ( m = - ( - 1 ) m t - m - n τ ) ,
22.12.12 2 K ds ( 2 K t , k ) = n = - ( - 1 ) n π sin ( π ( t - n τ ) ) = n = - ( m = - ( - 1 ) m + n t - m - n τ ) ,