About the Project

Lebesgue%20constants

AdvancedHelp

(0.002 seconds)

1—10 of 499 matching pages

1: 1.8 Fourier Series
Lebesgue Constants
1.8.8 L n = 1 π 0 π | sin ( n + 1 2 ) t | sin ( 1 2 t ) d t , n = 0 , 1 , .
Riemann–Lebesgue Lemma
2: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
§1.18(ii) L 2 spaces on intervals in
For a Lebesgue–Stieltjes measure d α on X let L 2 ( X , d α ) be the space of all Lebesgue–Stieltjes measurable complex-valued functions on X which are square integrable with respect to d α , …The space L 2 ( X , d α ) becomes a separable Hilbert space with inner product … Eigenfunctions corresponding to the continuous spectrum are non- L 2 functions. … The well must be deep and broad enough to allow existence of such L 2 discrete states. …
3: 18.39 Applications in the Physical Sciences
Below we consider two potentials with analytically known eigenfunctions and eigenvalues where the spectrum is entirely point, or discrete, with all eigenfunctions being L 2 and forming a complete set. … The spectrum is mixed, as in §1.18(viii), the positive energy, non- L 2 , scattering states are the subject of Chapter 33. … with an infinite set of orthonormal L 2 eigenfunctions … The bound state L 2 eigenfunctions of the radial Coulomb Schrödinger operator are discussed in §§18.39(i) and 18.39(ii), and the δ -function normalized (non- L 2 ) in Chapter 33, where the solutions appear as Whittaker functions. … The fact that non- L 2 continuum scattering eigenstates may be expressed in terms or (infinite) sums of L 2 functions allows a reformulation of scattering theory in atomic physics wherein no non- L 2 functions need appear. …
4: 1.4 Calculus of One Variable
Stieltjes, Lebesgue, and Lebesgue–Stieltjes integrals
A more general concept of integrability of a function on a bounded or unbounded interval is Lebesgue integrability, which allows discussion of functions which may not be well defined everywhere (especially on sets of measure zero) for x . …Similarly the Stieltjes integral can be generalized to a Lebesgue–Stieltjes integral with respect to the Lebesgue-Stieltjes measure d μ ( x ) and it is well defined for functions f which are integrable with respect to that more general measure. … … For α ( x ) nondecreasing on the closure I of an interval ( a , b ) , the measure d α is absolutely continuous if α ( x ) is continuous and there exists a weight function w ( x ) 0 , Riemann (or Lebesgue) integrable on finite subintervals of I , such that …
5: Bibliography F
  • FDLIBM (free C library)
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • H. E. Fettis and J. C. Caslin (1964) Tables of Elliptic Integrals of the First, Second, and Third Kind. Technical report Technical Report ARL 64-232, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio.
  • C. L. Frenzen and R. Wong (1986) Asymptotic expansions of the Lebesgue constants for Jacobi series. Pacific J. Math. 122 (2), pp. 391–415.
  • G. Freud (1969) On weighted polynomial approximation on the whole real axis. Acta Math. Acad. Sci. Hungar. 20, pp. 223–225.
  • 6: David M. Bressoud
     Wagon), published by Key College Press in 2000, and A Radical Approach to Lebesgue’s Theory of Integration, published by the Mathematical Association of America and Cambridge University Press in 2007. …
    7: 1.1 Special Notation
    x , y real variables.
    L 2 ( X , d α ) the space of all Lebesgue–Stieltjes measurable functions on X which are square integrable with respect to d α .
    8: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Zhang and Jin (1996, Table 3.8) tabulates γ ( a , x ) for a = 0.5 , 1 , 3 , 5 , 10 , 25 , 50 , 100 , x = 0 ( .1 ) 1 ( 1 ) 3 , 5 ( 5 ) 30 , 50 , 100 to 8D or 8S.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 9: 20 Theta Functions
    Chapter 20 Theta Functions
    10: 3.11 Approximation Techniques
    to the maximum error of the minimax polynomial p n ( x ) is bounded by 1 + L n , where L n is the n th Lebesgue constant for Fourier series; see §1.8(i). … Moreover, the set of minimax approximations p 0 ( x ) , p 1 ( x ) , p 2 ( x ) , , p n ( x ) requires the calculation and storage of 1 2 ( n + 1 ) ( n + 2 ) coefficients, whereas the corresponding set of Chebyshev-series approximations requires only n + 1 coefficients. …