About the Project

Lax pairs

AdvancedHelp

(0.001 seconds)

11—20 of 78 matching pages

11: 13.28 Physical Applications
and V κ , μ ( j ) ( z ) , j = 1 , 2 , denotes any pair of solutions of Whittaker’s equation (13.14.1). …
12: 15.17 Mathematical Applications
First, as spherical functions on noncompact Riemannian symmetric spaces of rank one, but also as associated spherical functions, intertwining functions, matrix elements of SL ( 2 , ) , and spherical functions on certain nonsymmetric Gelfand pairs. …
13: Bille C. Carlson
In his paper Lauricella’s hypergeometric function F D (1963), he defined the R -function, a multivariate hypergeometric function that is homogeneous in its variables, each variable being paired with a parameter. …
14: 10.2 Definitions
§10.2(iii) Numerically Satisfactory Pairs of Solutions
Table 10.2.1 lists numerically satisfactory pairs of solutions (§2.7(iv)) of (10.2.1) for the stated intervals or regions in the case ν 0 . …
Table 10.2.1: Numerically satisfactory pairs of solutions of Bessel’s equation.
Pair Interval or Region
15: 14.2 Differential Equations
§14.2(iii) Numerically Satisfactory Solutions
Hence they comprise a numerically satisfactory pair of solutions (§2.7(iv)) of (14.2.2) in the interval 1 < x < 1 . When μ ν = 0 , 1 , 2 , , or μ + ν = 1 , 2 , 3 , , 𝖯 ν μ ( x ) and 𝖯 ν μ ( x ) are linearly dependent, and in these cases either may be paired with almost any linearly independent solution to form a numerically satisfactory pair. … Hence they comprise a numerically satisfactory pair of solutions of (14.2.2) in the interval 1 < x < . With the same conditions, P ν μ ( x ) and 𝑸 ν μ ( x ) comprise a numerically satisfactory pair of solutions in the interval < x < 1 . …
16: 23.22 Methods of Computation
Then a pair of generators 2 ω 1 and 2 ω 3 can be chosen in an almost canonical way as follows. …This yields a pair of generators that satisfy τ > 0 , | τ | 1 2 , | τ | > 1 . …
  • (a)

    In the general case, given by c d 0 , we compute the roots α , β , γ , say, of the cubic equation 4 t 3 c t d = 0 ; see §1.11(iii). These roots are necessarily distinct and represent e 1 , e 2 , e 3 in some order.

    If c and d are real, and the discriminant is positive, that is c 3 27 d 2 > 0 , then e 1 , e 2 , e 3 can be identified via (23.5.1), and k 2 , k 2 obtained from (23.6.16).

    If c 3 27 d 2 < 0 , or c and d are not both real, then we label α , β , γ so that the triangle with vertices α , β , γ is positively oriented and [ α , γ ] is its longest side (chosen arbitrarily if there is more than one). In particular, if α , β , γ are collinear, then we label them so that β is on the line segment ( α , γ ) . In consequence, k 2 = ( β γ ) / ( α γ ) , k 2 = ( α β ) / ( α γ ) satisfy k 2 0 k 2 (with strict inequality unless α , β , γ are collinear); also | k 2 | , | k 2 | 1 .

    Finally, on taking the principal square roots of k 2 and k 2 we obtain values for k and k that lie in the 1st and 4th quadrants, respectively, and 2 ω 1 , 2 ω 3 are given by

    23.22.1 2 ω 1 M ( 1 , k ) = 2 i ω 3 M ( 1 , k ) = π 3 c ( 2 + k 2 k 2 ) ( k 2 k 2 ) d ( 1 k 2 k 2 ) ,

    where M denotes the arithmetic-geometric mean (see §§19.8(i) and 22.20(ii)). This process yields 2 possible pairs ( 2 ω 1 , 2 ω 3 ), corresponding to the 2 possible choices of the square root.

  • (b)

    If d = 0 , then

    23.22.2 2 ω 1 = 2 i ω 3 = ( Γ ( 1 4 ) ) 2 2 π c 1 / 4 .

    There are 4 possible pairs ( 2 ω 1 , 2 ω 3 ), corresponding to the 4 rotations of a square lattice. The lemniscatic case occurs when c > 0 and ω 1 > 0 .

  • (c)

    If c = 0 , then

    23.22.3 2 ω 1 = 2 e π i / 3 ω 3 = ( Γ ( 1 3 ) ) 3 2 π d 1 / 6 .

    There are 6 possible pairs ( 2 ω 1 , 2 ω 3 ), corresponding to the 6 rotations of a lattice of equilateral triangles. The equianharmonic case occurs when d > 0 and ω 1 > 0 .

  • 17: 10.71 Integrals
    In the following equations f ν , g ν is any one of the four ordered pairs given in (10.63.1), and f ^ ν , g ^ ν is either the same ordered pair or any other ordered pair in (10.63.1). …
    18: 10.24 Functions of Imaginary Order
    In consequence of (10.24.6), when x is large J ~ ν ( x ) and Y ~ ν ( x ) comprise a numerically satisfactory pair of solutions of (10.24.1); compare §2.7(iv). Also, in consequence of (10.24.7)–(10.24.9), when x is small either J ~ ν ( x ) and tanh ( 1 2 π ν ) Y ~ ν ( x ) or J ~ ν ( x ) and Y ~ ν ( x ) comprise a numerically satisfactory pair depending whether ν 0 or ν = 0 . …
    19: 10.45 Functions of Imaginary Order
    In consequence of (10.45.5)–(10.45.7), I ~ ν ( x ) and K ~ ν ( x ) comprise a numerically satisfactory pair of solutions of (10.45.1) when x is large, and either I ~ ν ( x ) and ( 1 / π ) sinh ( π ν ) K ~ ν ( x ) , or I ~ ν ( x ) and K ~ ν ( x ) , comprise a numerically satisfactory pair when x is small, depending whether ν 0 or ν = 0 . …
    20: 1.13 Differential Equations
    Fundamental Pair
    Two solutions w 1 ( z ) and w 2 ( z ) are called a fundamental pair if any other solution w ( z ) is expressible as …A fundamental pair can be obtained, for example, by taking any z 0 D and requiring that … The following three statements are equivalent: w 1 ( z ) and w 2 ( z ) comprise a fundamental pair in D ; 𝒲 { w 1 ( z ) , w 2 ( z ) } does not vanish in D ; w 1 ( z ) and w 2 ( z ) are linearly independent, that is, the only constants A and B such that … If w 0 ( z ) is any one solution, and w 1 ( z ) , w 2 ( z ) are a fundamental pair of solutions of the corresponding homogeneous equation (1.13.1), then every solution of (1.13.8) can be expressed as …