# Laplace transforms

(0.002 seconds)

## 21—30 of 45 matching pages

##### 21: 13.23 Integrals
###### §13.23(i) Laplace and Mellin Transforms
13.23.1 $\int_{0}^{\infty}e^{-zt}t^{\nu-1}M_{\kappa,\mu}\left(t\right)\mathrm{d}t=\frac% {\Gamma\left(\mu+\nu+\tfrac{1}{2}\right)}{\left(z+\frac{1}{2}\right)^{\mu+\nu+% \frac{1}{2}}}\*{{}_{2}F_{1}}\left({\tfrac{1}{2}+\mu-\kappa,\tfrac{1}{2}+\mu+% \nu\atop 1+2\mu};\frac{1}{z+\frac{1}{2}}\right),$ $\Re\mu+\nu+\tfrac{1}{2}>0$, $\Re z>\tfrac{1}{2}$.
13.23.2 $\int_{0}^{\infty}e^{-zt}t^{\mu-\frac{1}{2}}M_{\kappa,\mu}\left(t\right)\mathrm% {d}t=\Gamma\left(2\mu+1\right)\left(z+\tfrac{1}{2}\right)^{-\kappa-\mu-\frac{1% }{2}}\*\left(z-\tfrac{1}{2}\right)^{\kappa-\mu-\frac{1}{2}},$ $\Re\mu>-\tfrac{1}{2}$, $\Re z>\tfrac{1}{2}$,
For additional Laplace and Mellin transforms see Erdélyi et al. (1954a, §§4.22, 5.20, 6.9, 7.5), Marichev (1983, pp. 283–287), Oberhettinger and Badii (1973, §1.17), Oberhettinger (1974, §§1.13, 2.8), and Prudnikov et al. (1992a, §§3.34, 3.35). Inverse Laplace transforms are given in Oberhettinger and Badii (1973, §2.16) and Prudnikov et al. (1992b, §§3.33, 3.34). …
##### 22: 10.46 Generalized and Incomplete Bessel Functions; Mittag-Leffler Function
The Laplace transform of $\phi\left(\rho,\beta;z\right)$ can be expressed in terms of the Mittag-Leffler function: …
##### 23: 18.17 Integrals
###### Hermite
18.17.40 $\int_{0}^{\infty}e^{-ax}L^{(\alpha)}_{n}\left(bx\right)x^{z-1}\mathrm{d}x=% \frac{\Gamma\left(z+n\right)}{n!}\*{(a-b)^{n}}a^{-n-z}\*{{}_{2}F_{1}}\left({-n% ,1+\alpha-z\atop 1-n-z};\frac{a}{a-b}\right),$ $\Re a>0$, $\Re z>0$.
##### 24: Bibliography P
• A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev (1992a) Integrals and Series: Direct Laplace Transforms, Vol. 4. Gordon and Breach Science Publishers, New York.
• A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev (1992b) Integrals and Series: Inverse Laplace Transforms, Vol. 5. Gordon and Breach Science Publishers, New York.
• ##### 25: 7.7 Integral Representations
7.7.4 $\int_{0}^{\infty}\frac{e^{-at}}{\sqrt{t+z^{2}}}\mathrm{d}t=\sqrt{\frac{\pi}{a}% }e^{az^{2}}\operatorname{erfc}\left(\sqrt{a}z\right),$ $\Re a>0$, $\Re z>0$.
###### Example. LaplaceTransform Inversion
3.5.38 $G(p)=\int_{0}^{\infty}e^{-pt}g(t)\mathrm{d}t,$
In fact from (7.14.4) and the inversion formula for the Laplace transform1.14(iii)) we have … A special case is the rule for Hilbert transforms1.14(v)): …
##### 27: Bibliography H
• P. I. Hadži (1973) The Laplace transform for expressions that contain a probability function. Bul. Akad. Štiince RSS Moldoven. 1973 (2), pp. 78–80, 93 (Russian).
• R. A. Handelsman and J. S. Lew (1970) Asymptotic expansion of Laplace transforms near the origin. SIAM J. Math. Anal. 1 (1), pp. 118–130.
##### 29: 8.19 Generalized Exponential Integral
8.19.3 $E_{p}\left(z\right)=\int_{1}^{\infty}\frac{e^{-zt}}{t^{p}}\mathrm{d}t,$ $|\operatorname{ph}z|<\tfrac{1}{2}\pi$,
8.19.4 $E_{p}\left(z\right)=\frac{z^{p-1}e^{-z}}{\Gamma\left(p\right)}\int_{0}^{\infty% }\frac{t^{p-1}e^{-zt}}{1+t}\mathrm{d}t,$ $|\operatorname{ph}z|<\tfrac{1}{2}\pi$, $\Re p>0$.
##### 30: Errata
• Section 1.14

There have been extensive changes in the notation used for the integral transforms defined in §1.14. These changes are applied throughout the DLMF. The following table summarizes the changes.

Previously, for the Fourier, Fourier cosine and Fourier sine transforms, either temporary local notations were used or the Fourier integrals were written out explicitly.